finetuned_distilbert_fa_zwnj_base_ner

This model is a fine-tuned version of HooshvareLab/distilbert-fa-zwnj-base on the mixed NER dataset collected from ARMAN, PEYMA, and WikiANN. It achieves the following results on the evaluation set:

  • Loss: 0.0343
  • Precision: 0.9416
  • Recall: 0.9549
  • F1: 0.9482
  • Accuracy: 0.9938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1456 1.0 1821 0.0699 0.7847 0.8037 0.7941 0.9773
0.0551 2.0 3642 0.0456 0.8574 0.8875 0.8722 0.9858
0.0283 3.0 5463 0.0333 0.8957 0.9225 0.9089 0.9902
0.0161 4.0 7284 0.0299 0.9229 0.9374 0.9301 0.9921
0.0103 5.0 9105 0.0298 0.9314 0.9471 0.9392 0.9929
0.0069 6.0 10926 0.0323 0.9305 0.9513 0.9408 0.9930
0.0045 7.0 12747 0.0337 0.9363 0.9510 0.9436 0.9933
0.0031 8.0 14568 0.0339 0.9395 0.9526 0.9460 0.9937
0.0024 9.0 16389 0.0334 0.9392 0.9545 0.9468 0.9938
0.0017 10.0 18210 0.0343 0.9416 0.9549 0.9482 0.9938

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.