mehdidn commited on
Commit
c52ab5e
·
1 Parent(s): ea375f0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -1
README.md CHANGED
@@ -1,3 +1,69 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: finetuned_distilbert_fa_zwnj_base_ner
12
+ results: []
13
  ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # finetuned_distilbert_fa_zwnj_base_ner
19
+
20
+ This model is a fine-tuned version of [HooshvareLab/distilbert-fa-zwnj-base](https://huggingface.co/HooshvareLab/distilbert-fa-zwnj-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0655
23
+ - Precision: 0.7831
24
+ - Recall: 0.8436
25
+ - F1: 0.8122
26
+ - Accuracy: 0.9807
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.332 | 1.0 | 1821 | 0.1963 | 0.3958 | 0.5123 | 0.4466 | 0.9382 |
58
+ | 0.1716 | 2.0 | 3642 | 0.1287 | 0.5640 | 0.6490 | 0.6035 | 0.9579 |
59
+ | 0.1037 | 3.0 | 5463 | 0.0911 | 0.6542 | 0.7514 | 0.6995 | 0.9697 |
60
+ | 0.0644 | 4.0 | 7284 | 0.0736 | 0.7380 | 0.8155 | 0.7749 | 0.9768 |
61
+ | 0.0408 | 5.0 | 9105 | 0.0655 | 0.7831 | 0.8436 | 0.8122 | 0.9807 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.21.2
67
+ - Pytorch 1.12.1+cu113
68
+ - Datasets 2.4.0
69
+ - Tokenizers 0.12.1