mehdidn commited on
Commit
c8b6385
·
1 Parent(s): b7be029

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [HooshvareLab/distilbert-fa-zwnj-base](https://huggingface.co/HooshvareLab/distilbert-fa-zwnj-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.0655
23
- - Precision: 0.7831
24
- - Recall: 0.8436
25
- - F1: 0.8122
26
- - Accuracy: 0.9807
27
 
28
  ## Model description
29
 
@@ -42,7 +42,7 @@ More information needed
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 5e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 16
48
  - seed: 42
@@ -54,11 +54,11 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | 0.332 | 1.0 | 1821 | 0.1963 | 0.3958 | 0.5123 | 0.4466 | 0.9382 |
58
- | 0.1716 | 2.0 | 3642 | 0.1287 | 0.5640 | 0.6490 | 0.6035 | 0.9579 |
59
- | 0.1037 | 3.0 | 5463 | 0.0911 | 0.6542 | 0.7514 | 0.6995 | 0.9697 |
60
- | 0.0644 | 4.0 | 7284 | 0.0736 | 0.7380 | 0.8155 | 0.7749 | 0.9768 |
61
- | 0.0408 | 5.0 | 9105 | 0.0655 | 0.7831 | 0.8436 | 0.8122 | 0.9807 |
62
 
63
 
64
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [HooshvareLab/distilbert-fa-zwnj-base](https://huggingface.co/HooshvareLab/distilbert-fa-zwnj-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.0296
23
+ - Precision: 0.9199
24
+ - Recall: 0.9378
25
+ - F1: 0.9288
26
+ - Accuracy: 0.9923
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 16
48
  - seed: 42
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.1443 | 1.0 | 1820 | 0.0708 | 0.7875 | 0.7912 | 0.7894 | 0.9771 |
58
+ | 0.0551 | 2.0 | 3640 | 0.0443 | 0.8602 | 0.8918 | 0.8757 | 0.9863 |
59
+ | 0.0289 | 3.0 | 5460 | 0.0343 | 0.8914 | 0.9216 | 0.9062 | 0.9899 |
60
+ | 0.0171 | 4.0 | 7280 | 0.0303 | 0.9142 | 0.9333 | 0.9236 | 0.9918 |
61
+ | 0.0117 | 5.0 | 9100 | 0.0296 | 0.9199 | 0.9378 | 0.9288 | 0.9923 |
62
 
63
 
64
  ### Framework versions