Edit model card

fine_tuned_bert

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1259
  • F1: 0.8182
  • F5: 0.8326
  • Precision: 0.7826
  • Recall: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 F5 Precision Recall
No log 1.0 65 0.2964 0.0 0.0 0.0 0.0
No log 2.0 130 0.2682 0.4737 0.4081 0.8182 0.3333
No log 3.0 195 0.2208 0.65 0.7421 0.4906 0.9630
No log 4.0 260 0.1924 0.7273 0.7816 0.6154 0.8889
No log 5.0 325 0.1246 0.8727 0.8788 0.8571 0.8889
No log 6.0 390 0.1142 0.8519 0.8519 0.8519 0.8519

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mehdie/fine_tuned_mBERT

Finetuned
(511)
this model