File size: 13,629 Bytes
8470793 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f643cbbd7e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f643cbbd870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f643cbbd900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f643cbbd990>", "_build": "<function ActorCriticPolicy._build at 0x7f643cbbda20>", "forward": "<function ActorCriticPolicy.forward at 0x7f643cbbdab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f643cbbdb40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f643cbbdbd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f643cbbdc60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f643cbbdcf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f643cbbdd80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f643cbbde10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f643cbb2d80>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691565615178366348, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADHEb0rMOU9siD7vUWPr750aGi91cBbvQAAAAAAAAAAjdQCvp35TT9uXu69GUPvvi0eT77Gq4M9AAAAAAAAAAAA0Fo8XM9guj6MvbMXCPGsr34du0pKpDMAAIA/AACAPzCnn77JJ1Q/tBssPrCi377Qaoe+sKZsPgAAAAAAAAAAAE/NPOtusD+CqKc+JIGSvs1VIzy24RQ+AAAAAAAAAADN3Ia6FLDDuie6NLzNEIo8+5mpO64ZcL0AAIA/AACAPxqJ1j2/gWg+hCALvmBksb4NcAA7bmP2PAAAAAAAAAAAwH4HvrRxPj8CtQQ+/wXivpl9ob3pXoA9AAAAAAAAAADGniu+pmJrP3Z4Sb5TkgW//HPAvkTitDsAAAAAAAAAAABgsTtxvXy5YLWDtoI4a7HHVRC7ogybNQAAgD8AAIA/YPtqPvORnD/HwxM/kKkgv5cEwD5ARSQ+AAAAAAAAAAAA5ok8XyDXPBLL771XSqK+dKQqO50Mb7wAAAAAAAAAAI0Spj2PCmy6gtBsPXSFBbKCWHW7YszSMgAAgD8AAIA/ZnSrPXq0wT8kX5s+cCwMvgaZWrwla/A9AAAAAAAAAACAVsa99mwLPaqRLj7NCZW+oE5CPYzKtjwAAAAAAAAAAE3zAz2uS5u6ZFGwtBtiArCStgg7ccpGMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGhfW1+iJyMAWyUS8KMAXSUR0CfW+lZHNHIdX2UKGgGR0BvLCqlxffGaAdL0WgIR0CfXBUPQOWjdX2UKGgGR0BxEidVea8ZaAdL1WgIR0CfXDvF3pwCdX2UKGgGR0BzJ/hcZ9/jaAdL+2gIR0CfXFgZCOWCdX2UKGgGR0Bwoso8ZDRdaAdLzGgIR0CfXgczImw8dX2UKGgGR0BxpJ/Tb349aAdLwmgIR0CfXzjy4FzNdX2UKGgGR0BzmRMQEpy7aAdLyGgIR0CfX1hd+ocadX2UKGgGR0BxHfe3x4IKaAdL2WgIR0CfX3q9XcQAdX2UKGgGR0ByG3J8v24/aAdL2WgIR0CfX9uvUz9CdX2UKGgGR0BxELg75mAcaAdLzmgIR0CfYByfL9uQdX2UKGgGR0BvLpDLKV6eaAdLyWgIR0CfYC0nPVurdX2UKGgGR0BygQicG1QZaAdL2WgIR0CfYFi5d4VzdX2UKGgGR0BznIcU/OdHaAdLy2gIR0CfYL4EwFkhdX2UKGgGR0BwYtmseXAuaAdL4mgIR0CfYYyJsO5KdX2UKGgGR0BzUNikO7QLaAdLz2gIR0CfYfeY2Kl6dX2UKGgGR0BwVRs/IKc/aAdLzWgIR0CfYlA3DNyHdX2UKGgGR0Bw/gLSeAd5aAdL1WgIR0CfYlzshPj5dX2UKGgGR0BxYrjOs1baaAdL12gIR0CfYrGgzxgBdX2UKGgGR0BxJ/o+wC8waAdLzmgIR0CfZmUBXCCSdX2UKGgGR0BuW1mvnr6daAdLzGgIR0CfZm57PY4AdX2UKGgGR0Bx0diLEUCaaAdLxGgIR0CfZuUBnzxxdX2UKGgGR0ByZX8n/kvLaAdLxmgIR0CfZ2JcPe54dX2UKGgGR0BzjSe8PFvRaAdLzWgIR0CfZ8PTG5tndX2UKGgGR0B0W+cZtNzsaAdL9mgIR0CfaItix3V1dX2UKGgGR0BxsKAbyYoiaAdL4WgIR0CfaOeSB9ThdX2UKGgGR0BwmvynUDuCaAdL32gIR0CfaWQsPJ7tdX2UKGgGR0Bwb1mpVCHAaAdLw2gIR0CfafdoWYWtdX2UKGgGR0ByiZBkZrHmaAdL02gIR0Cfagnx8UmEdX2UKGgGR0BwpEZflZHNaAdLyWgIR0CfaqsmOU+tdX2UKGgGR0BjCurQw9JSaAdN6ANoCEdAn2qqsuFpPHV9lChoBkdAcDamixmkFmgHS9toCEdAn35KYzBRAXV9lChoBkdAcZlpdKNADGgHS+doCEdAn35SKFZgX3V9lChoBkdAci2/EwWWQmgHS8toCEdAn4BuGoJiRXV9lChoBkdAb75lxwQ18GgHS8hoCEdAn4CrA+IM0HV9lChoBkdAbpk9nscABGgHS8loCEdAn4EEyk9EC3V9lChoBkdAc0kdadMCcWgHS+xoCEdAn4GIc7yQP3V9lChoBkdAc7A+ZgG8mWgHS9RoCEdAn4GroB7u2XV9lChoBkdAcYEsxO+IuWgHS8NoCEdAn4H0bcXWOXV9lChoBkdActPyksSTQmgHS81oCEdAn4H+Jxeb/nV9lChoBkdAcM+0pmVZ92gHS7xoCEdAn4KBGQSzxHV9lChoBkdAcqmlQdjoZGgHS8NoCEdAn4K5aq0dBHV9lChoBkdAbdmzrNW2gGgHS8ZoCEdAn4M7RfF72XV9lChoBkdAciiH6/IsAmgHS+xoCEdAn4NyOJcgQ3V9lChoBkdAcsUuaF23a2gHS95oCEdAn4PkT101ZXV9lChoBkdAcEcuaF23a2gHS9doCEdAn4SUNKAavXV9lChoBkdAc9amapgkT2gHS9loCEdAn4Smq5sj3XV9lChoBkdAcpW3eN1hcGgHS8doCEdAn4aNMXaakXV9lChoBkdAcfqrLQokRmgHS8VoCEdAn4bmBSUC73V9lChoBkdAYvBa/RE4N2gHTegDaAhHQJ+HF4xDb8F1fZQoaAZHQHMP9PtUn5VoB0vfaAhHQJ+HHiFTNt91fZQoaAZHQHATglByCFtoB0u4aAhHQJ+HVNO/L1V1fZQoaAZHQHERt34bjtJoB0vHaAhHQJ+Hglu3trt1fZQoaAZHQHDQBD1GsmxoB0vIaAhHQJ+HxKBd2Pl1fZQoaAZHQHEF9zKcNH9oB0vEaAhHQJ+IG19fCyh1fZQoaAZHQHF9Qn+hoM9oB0vsaAhHQJ+IRUMoc711fZQoaAZHQHCi4U34sVdoB0vLaAhHQJ+IfvF3pwF1fZQoaAZHQHIOJuQ6p5xoB0vOaAhHQJ+I/qdH2AZ1fZQoaAZHQHGlTh5xBE9oB0vFaAhHQJ+JZEXtSht1fZQoaAZHQHCJTZDiOvNoB0vhaAhHQJ+JtlOGj9J1fZQoaAZHQG58PH93r2RoB0vKaAhHQJ+KMB1cMVl1fZQoaAZHQHLtKwhW5pdoB0vjaAhHQJ+KyP91loV1fZQoaAZHQHIhpTIeYD1oB0vMaAhHQJ+MSrOqvNh1fZQoaAZHQHFj7nPmgapoB0vcaAhHQJ+MbyAhB7h1fZQoaAZHQHCyoScslLRoB0vbaAhHQJ+M4LkS26V1fZQoaAZHQHEPMVk+X7doB0vjaAhHQJ+NXTgEU0x1fZQoaAZHQHI9oduHerNoB0vSaAhHQJ+NYPbwjMV1fZQoaAZHQHNsPiT+vQpoB0v0aAhHQJ+NmW1MM7V1fZQoaAZHQHAnckIHC41oB0vFaAhHQJ+NnNke6qd1fZQoaAZHQHJg9rKvFFVoB0vnaAhHQJ+Np7eEZix1fZQoaAZHQG+mJHZsbedoB0vUaAhHQJ+NzDhtLth1fZQoaAZHQG6vkIPbwjNoB0u5aAhHQJ+OBkhA4XJ1fZQoaAZHQHHFJM+NcW1oB0vZaAhHQJ+OV8w5/9Z1fZQoaAZHQHDRnhCMPz5oB0vRaAhHQJ+PDOQhfSh1fZQoaAZHQHEzMFdLQHBoB0vSaAhHQJ+PZvhqCYl1fZQoaAZHQHCfnHJcPe5oB0vGaAhHQJ+PnImw7kp1fZQoaAZHQGQ2lTm4iHJoB03oA2gIR0Cfj9CA+Y+jdX2UKGgGR0Bw87JT2nKoaAdLw2gIR0CfkAyRjjJddX2UKGgGR0BvHDRKHwgDaAdLx2gIR0CfkYwOe8PGdX2UKGgGR0BxQEIjW07baAdL0WgIR0CfkabMottidX2UKGgGR0BzI2/mDDjzaAdLzmgIR0CfkhowVTJhdX2UKGgGR0Bx33R8c+7laAdLy2gIR0CfksK5kK/mdX2UKGgGR0BvzgLeANG3aAdLzmgIR0CfktO8kD6ndX2UKGgGR0Byp3u/k/8maAdL2mgIR0CfkvDuSfUXdX2UKGgGR0BxtPJZGKAKaAdL3GgIR0CfkwKO1fE5dX2UKGgGR0BxCgZNwiqyaAdL0WgIR0Cfkx6uW8h+dX2UKGgGR0Bw4FoL5RCQaAdL32gIR0Cfk0LQ5WBCdX2UKGgGR0BydIUmD15CaAdL2mgIR0Cfk72Yv38GdX2UKGgGR0BxpteLNwBHaAdL6WgIR0Cfk8sPJ7swdX2UKGgGR0BwFQuBczInaAdLx2gIR0Cfk/J2dNFjdX2UKGgGR0ByELied07saAdL4mgIR0CflNd+G47SdX2UKGgGR0ByvKDQJHAiaAdL3GgIR0CflN1vl2eQdX2UKGgGR0BzKYvSMLncaAdL0mgIR0CflQ4CIUJwdX2UKGgGR0BuCM34sVcmaAdL4mgIR0CflTntOVPfdX2UKGgGR0BwERZSvTw2aAdLumgIR0CflnhRqGlAdX2UKGgGR0Bw3bRKHwgDaAdL12gIR0Cflqai9IwudX2UKGgGR0BzuWH6/IsAaAdL8GgIR0Cfl97z06HTdX2UKGgGR0BymC7SRbKSaAdLxGgIR0CfmAnpSrHVdX2UKGgGR0Bt50mShakiaAdL1WgIR0CfmFbSZ0CBdX2UKGgGR0Bws9N21UlzaAdL2WgIR0CfmLinpB5YdX2UKGgGR0ByZn0Bfa6CaAdL8WgIR0CfmVPnB+F2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |