merryjane commited on
Commit
8470793
1 Parent(s): 9bd8b8e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 279.56 +/- 23.01
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 286.33 +/- 25.60
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c8c91074a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c8c91074af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c8c91074b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c8c91074c10>", "_build": "<function ActorCriticPolicy._build at 0x7c8c91074ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7c8c91074d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c8c91074dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c8c91074e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7c8c91074ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c8c91074f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c8c91075000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c8c91075090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c8c9106d700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691482247031474118, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM39pDwNfBk+StMWvUAej75IV3Q7hBbCOQAAAAAAAAAAZiZCurWfXz7gvLC85/KTvp1bszuDMEi9AAAAAAAAAAAaeFQ9Hi6hP9/cnj6b8iK/6oPZPIqTLj4AAAAAAAAAAMB8kz3szWc/vk9YPgDzMr+hSLQ9ziCbPQAAAAAAAAAAQOdKvsWTjz9jnwi/rnobv8yetr4FY76+AAAAAAAAAAAAZ/G8w8FeuozvoLTk81mv/9AkOdoFhjMAAIA/AACAPzMiqDyvzCU9mLRmvtWTHr5h3uy8ZOCZvQAAAAAAAAAAiz+mvv9QPj8Mcso9wS0iv7z8A7/d/zQ+AAAAAAAAAACmlea9w6krP42BWz3jaNS+ZkAkvoLutz0AAAAAAAAAAFqx5D0fRcG7TiTNvPR4/rxXkO28JWlIPgAAgD8AAAAAwBGIvYq3Cz5+0pA+vHuwvk/2rj33lSE9AAAAAAAAAACaKC6+Z3tIP69bBr51HAu/XGqovgq0RDwAAAAAAAAAADM7sLvDNWy4kuxvPcGMgzy1u9q5ON5lvQAAgD8AAIA/ujwcPhyJULyNpQM+XpaWvJ2oxb0m1nW9AACAPwAAgD8ab6M9+LGSPVI2tL27snW+SAYXPT3Z5jwAAAAAAAAAAIa7Or56fhE/+Em4PcnS4b75gDe+rV0oPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE+YgZjx0+2MAWyUS6qMAXSUR0Cxk/vHYHxCdX2UKGgGR0ByI6p97WupaAdL2WgIR0CxlCzpPhybdX2UKGgGR0BwI6U4aP0aaAdL0WgIR0CxlDUcwQDndX2UKGgGR0Bw52BDohZAaAdL52gIR0CxlHIV6/qPdX2UKGgGR0BwIYDGLk0aaAdL9mgIR0CxlIAr1/UfdX2UKGgGR0BzhAymALApaAdL6mgIR0CxlIPNiYsvdX2UKGgGR0Bv8g8wHqu9aAdLwmgIR0CxlJo1LrX2dX2UKGgGR0BxRQ9GI9DAaAdL1GgIR0CxlKIP9UCJdX2UKGgGR0BujsQiA2AHaAdLzGgIR0CxlKjlYEGJdX2UKGgGR0BzVzUSZjQRaAdLxmgIR0CxlP/xQSBcdX2UKGgGR0BwwHZ39rGjaAdL42gIR0CxlRDQzDXOdX2UKGgGR0BwGhRvWH1waAdL12gIR0CxlR23z+WGdX2UKGgGR0Bz3jeSB9ThaAdL4GgIR0CxlTvqoqCpdX2UKGgGR0BxGaNQ0oBraAdLxmgIR0CxlT6pDNQkdX2UKGgGR0ByiLSro4dZaAdLyGgIR0CxlUWPcSGrdX2UKGgGR0BzQ5bFCLMtaAdL/GgIR0CxlUhs2vSudX2UKGgGR0BweUr1/Ue/aAdL6WgIR0CxlUrbUPQOdX2UKGgGR0Bx6di5NGmUaAdL3mgIR0CxlYUSqU/wdX2UKGgGR0Bzy2JXQtz0aAdL02gIR0CxlbZkCmuUdX2UKGgGR0BQF0q6OHWSaAdLrWgIR0CxlbQRsdkrdX2UKGgGR0BxbpeNT987aAdL1WgIR0Cxlcqr7wazdX2UKGgGR0ByAkLc9GI9aAdL12gIR0CxldG1lXijdX2UKGgGR0By/q6Ae7tiaAdL1mgIR0Cxle8hLXcydX2UKGgGR0Bxt55UtI07aAdL8GgIR0Cxlg9GViWndX2UKGgGR0BzRt86V+qjaAdNMwFoCEdAsZYWr/82rHV9lChoBkdAcx0nanJkoWgHS71oCEdAsZY2801qFnV9lChoBkdAcSwn+Q2dd2gHS9VoCEdAsZrPuXu3MXV9lChoBkdAdAkXVLBbfWgHS+toCEdAsZrW+h4+r3V9lChoBkdAcS6byYoiLWgHS8RoCEdAsZriDM/yG3V9lChoBkdActmLeANG3GgHS9poCEdAsZr7EMspX3V9lChoBkdAcP9ha1TisGgHS+BoCEdAsZsL225QQHV9lChoBkdAb/1F1jiGWWgHS+ZoCEdAsZsa3trsSnV9lChoBkdAc1riHZbpvGgHS+BoCEdAsZtSXZ5AyHV9lChoBkdAcPFrxiG34WgHS9doCEdAsZt21/lQuXV9lChoBkdAcUBSL61stWgHS9ZoCEdAsZuO4rjHXHV9lChoBkdAclfUzsQd0mgHS+RoCEdAsZugG9pRGnV9lChoBkdAcPOHIZIg/2gHS+9oCEdAsZue5RTCL3V9lChoBkdAcHX08vEjxGgHS89oCEdAsZuk7JW/8HV9lChoBkdAMOmNipeeF2gHS5loCEdAsZvNiqhlDnV9lChoBkdAcW4QarFOwmgHS85oCEdAsZvM83dbgXV9lChoBkdAcJRxTsIE82gHS8BoCEdAsZvY/MW43HV9lChoBkdAcf8B+F10T2gHTQ0BaAhHQLGcLI065oZ1fZQoaAZHQHIFfdRBNVRoB0vQaAhHQLGcNsIVuaZ1fZQoaAZHQHCXBIe5nUVoB0u/aAhHQLGcRBTXJ5p1fZQoaAZHQHOXaZhKDkFoB0vmaAhHQLGcTvMKTjh1fZQoaAZHQHNV1Iqbz9VoB0vqaAhHQLGcdP2wmmd1fZQoaAZHQHL8znFHavloB0vXaAhHQLGcdv6j3251fZQoaAZHQFA5nssxwhpoB0upaAhHQLGcm1SwW311fZQoaAZHQHDdNO2y9mJoB0vbaAhHQLGcsqYJE6V1fZQoaAZHQG9GPDP4VRFoB0vOaAhHQLGc52eg+Ql1fZQoaAZHQHMO29cry2BoB0vSaAhHQLGc7+W4Vh11fZQoaAZHQHC1RKtga3toB0vZaAhHQLGc/+so2GZ1fZQoaAZHQHIub9/BnBdoB0v3aAhHQLGdBosZpBZ1fZQoaAZHQHNSCH6/IsBoB0vOaAhHQLGdFiblRxd1fZQoaAZHQHI5tqHoHLRoB0veaAhHQLGdPUDuBtl1fZQoaAZHQHCUdgrpaA5oB0vzaAhHQLGdUulGgBd1fZQoaAZHQHH4DyWiUPhoB0u3aAhHQLGdcuOS4e91fZQoaAZHQG55OEEkjX5oB0vSaAhHQLGdeM3qAz51fZQoaAZHQHBA6q4pc5doB0vJaAhHQLGdtDdP+GZ1fZQoaAZHQHBqraZhKDloB0v1aAhHQLGduHUMG5d1fZQoaAZHQHF1szVMEidoB0v8aAhHQLGd0xd6cAl1fZQoaAZHQHAv1xOtW+5oB0vaaAhHQLGd0tXgccV1fZQoaAZHQHJkULhJiAloB0u/aAhHQLGd5ki2Ujd1fZQoaAZHQElR40Mw1zhoB0ukaAhHQLGd9IvalDZ1fZQoaAZHQHBCUY0l7dBoB0u1aAhHQLGeBZPVNHp1fZQoaAZHQG4vjSPU8V5oB0vmaAhHQLGeCmnO0LN1fZQoaAZHQHIHCoCMglpoB0u0aAhHQLGeGPC2tuF1fZQoaAZHQG/DTn7pFCtoB0u+aAhHQLGeMUYbbUR1fZQoaAZHQHIz4ysS00FoB0vQaAhHQLGea6J66at1fZQoaAZHQHKsYFqzqr1oB0vjaAhHQLGexArQPZt1fZQoaAZHQHH/nBHkLhJoB0vhaAhHQLGe3oB7u2J1fZQoaAZHQHNn+NDMNc5oB0u4aAhHQLGfFBVMmF91fZQoaAZHQHC+ZbyH2ytoB0vraAhHQLGfJqebutx1fZQoaAZHQHRauws5GSZoB0vsaAhHQLGfMZyMkyF1fZQoaAZHQHGOGNedCmdoB0vnaAhHQLGffPPszEd1fZQoaAZHQHG11FlTWG1oB0vdaAhHQLGfiuFYdQx1fZQoaAZHQHJH1Bt1p0xoB0veaAhHQLGfjsgMc6x1fZQoaAZHQHNM1x0dRzloB0vSaAhHQLGfomcOLBN1fZQoaAZHQHNOlYU34sVoB0vcaAhHQLGf72hZha11fZQoaAZHQHG6t8qnWJ9oB0v/aAhHQLGf8NIbwSd1fZQoaAZHQHGJHEAHVwxoB0vyaAhHQLGgA94eLeh1fZQoaAZHQHDjrfk3juNoB0veaAhHQLGgFK3NLUV1fZQoaAZHQHEmcyeqaPVoB0vBaAhHQLGgE6pYLb51fZQoaAZHQHGZ5hrnDBNoB0v3aAhHQLGgGDQZ4wB1fZQoaAZHQG2LsuvllshoB0u+aAhHQLGgXlsP8Q91fZQoaAZHQGNLLzwtrbhoB03oA2gIR0CxoGs7EHdHdX2UKGgGR0BvKP8IiTt+aAdLy2gIR0CxoMc1baAXdX2UKGgGR0BxgVnSOR1YaAdL0GgIR0CxoOdMPBi1dX2UKGgGR0BysWLk0aZQaAdLzGgIR0CxoOwP3BYWdX2UKGgGR0Bwa+g3974SaAdNCAFoCEdAsaEciY9gW3V9lChoBkdAce99Dx9XtGgHS8BoCEdAsaEnEtNBW3V9lChoBkdAc40d6LOzIGgHS8hoCEdAsaEpuGbkO3V9lChoBkdAc3HXdj5KvmgHS9toCEdAsaFMvmHP/3V9lChoBkdAcbl9TxXnyWgHS+5oCEdAsaF3yqdYn3V9lChoBkdAcZYE7nxJ/WgHS8hoCEdAsaGBmpVCHHV9lChoBkdAceDfxMFlkGgHS9xoCEdAsaGUAn2IwnV9lChoBkdAcZ2afBeok2gHS9hoCEdAsaGjnB+F13V9lChoBkdAchR+VTrE+GgHS/NoCEdAsaG1b+tKZnV9lChoBkdAcEak5IYm9mgHS+loCEdAsaG+q+8Gs3V9lChoBkdAcVAjwQUYbmgHS9JoCEdAsaHVb3XZoXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQU2d2tVWbJHrsgyAr1wWeXYwDaW5jlIoRUd7SfAt4EE5anVCEeRR5zQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f643cbbd7e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f643cbbd870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f643cbbd900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f643cbbd990>", "_build": "<function ActorCriticPolicy._build at 0x7f643cbbda20>", "forward": "<function ActorCriticPolicy.forward at 0x7f643cbbdab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f643cbbdb40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f643cbbdbd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f643cbbdc60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f643cbbdcf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f643cbbdd80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f643cbbde10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f643cbb2d80>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691565615178366348, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADHEb0rMOU9siD7vUWPr750aGi91cBbvQAAAAAAAAAAjdQCvp35TT9uXu69GUPvvi0eT77Gq4M9AAAAAAAAAAAA0Fo8XM9guj6MvbMXCPGsr34du0pKpDMAAIA/AACAPzCnn77JJ1Q/tBssPrCi377Qaoe+sKZsPgAAAAAAAAAAAE/NPOtusD+CqKc+JIGSvs1VIzy24RQ+AAAAAAAAAADN3Ia6FLDDuie6NLzNEIo8+5mpO64ZcL0AAIA/AACAPxqJ1j2/gWg+hCALvmBksb4NcAA7bmP2PAAAAAAAAAAAwH4HvrRxPj8CtQQ+/wXivpl9ob3pXoA9AAAAAAAAAADGniu+pmJrP3Z4Sb5TkgW//HPAvkTitDsAAAAAAAAAAABgsTtxvXy5YLWDtoI4a7HHVRC7ogybNQAAgD8AAIA/YPtqPvORnD/HwxM/kKkgv5cEwD5ARSQ+AAAAAAAAAAAA5ok8XyDXPBLL771XSqK+dKQqO50Mb7wAAAAAAAAAAI0Spj2PCmy6gtBsPXSFBbKCWHW7YszSMgAAgD8AAIA/ZnSrPXq0wT8kX5s+cCwMvgaZWrwla/A9AAAAAAAAAACAVsa99mwLPaqRLj7NCZW+oE5CPYzKtjwAAAAAAAAAAE3zAz2uS5u6ZFGwtBtiArCStgg7ccpGMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGhfW1+iJyMAWyUS8KMAXSUR0CfW+lZHNHIdX2UKGgGR0BvLCqlxffGaAdL0WgIR0CfXBUPQOWjdX2UKGgGR0BxEidVea8ZaAdL1WgIR0CfXDvF3pwCdX2UKGgGR0BzJ/hcZ9/jaAdL+2gIR0CfXFgZCOWCdX2UKGgGR0Bwoso8ZDRdaAdLzGgIR0CfXgczImw8dX2UKGgGR0BxpJ/Tb349aAdLwmgIR0CfXzjy4FzNdX2UKGgGR0BzmRMQEpy7aAdLyGgIR0CfX1hd+ocadX2UKGgGR0BxHfe3x4IKaAdL2WgIR0CfX3q9XcQAdX2UKGgGR0ByG3J8v24/aAdL2WgIR0CfX9uvUz9CdX2UKGgGR0BxELg75mAcaAdLzmgIR0CfYByfL9uQdX2UKGgGR0BvLpDLKV6eaAdLyWgIR0CfYC0nPVurdX2UKGgGR0BygQicG1QZaAdL2WgIR0CfYFi5d4VzdX2UKGgGR0BznIcU/OdHaAdLy2gIR0CfYL4EwFkhdX2UKGgGR0BwYtmseXAuaAdL4mgIR0CfYYyJsO5KdX2UKGgGR0BzUNikO7QLaAdLz2gIR0CfYfeY2Kl6dX2UKGgGR0BwVRs/IKc/aAdLzWgIR0CfYlA3DNyHdX2UKGgGR0Bw/gLSeAd5aAdL1WgIR0CfYlzshPj5dX2UKGgGR0BxYrjOs1baaAdL12gIR0CfYrGgzxgBdX2UKGgGR0BxJ/o+wC8waAdLzmgIR0CfZmUBXCCSdX2UKGgGR0BuW1mvnr6daAdLzGgIR0CfZm57PY4AdX2UKGgGR0Bx0diLEUCaaAdLxGgIR0CfZuUBnzxxdX2UKGgGR0ByZX8n/kvLaAdLxmgIR0CfZ2JcPe54dX2UKGgGR0BzjSe8PFvRaAdLzWgIR0CfZ8PTG5tndX2UKGgGR0B0W+cZtNzsaAdL9mgIR0CfaItix3V1dX2UKGgGR0BxsKAbyYoiaAdL4WgIR0CfaOeSB9ThdX2UKGgGR0BwmvynUDuCaAdL32gIR0CfaWQsPJ7tdX2UKGgGR0Bwb1mpVCHAaAdLw2gIR0CfafdoWYWtdX2UKGgGR0ByiZBkZrHmaAdL02gIR0Cfagnx8UmEdX2UKGgGR0BwpEZflZHNaAdLyWgIR0CfaqsmOU+tdX2UKGgGR0BjCurQw9JSaAdN6ANoCEdAn2qqsuFpPHV9lChoBkdAcDamixmkFmgHS9toCEdAn35KYzBRAXV9lChoBkdAcZlpdKNADGgHS+doCEdAn35SKFZgX3V9lChoBkdAci2/EwWWQmgHS8toCEdAn4BuGoJiRXV9lChoBkdAb75lxwQ18GgHS8hoCEdAn4CrA+IM0HV9lChoBkdAbpk9nscABGgHS8loCEdAn4EEyk9EC3V9lChoBkdAc0kdadMCcWgHS+xoCEdAn4GIc7yQP3V9lChoBkdAc7A+ZgG8mWgHS9RoCEdAn4GroB7u2XV9lChoBkdAcYEsxO+IuWgHS8NoCEdAn4H0bcXWOXV9lChoBkdActPyksSTQmgHS81oCEdAn4H+Jxeb/nV9lChoBkdAcM+0pmVZ92gHS7xoCEdAn4KBGQSzxHV9lChoBkdAcqmlQdjoZGgHS8NoCEdAn4K5aq0dBHV9lChoBkdAbdmzrNW2gGgHS8ZoCEdAn4M7RfF72XV9lChoBkdAciiH6/IsAmgHS+xoCEdAn4NyOJcgQ3V9lChoBkdAcsUuaF23a2gHS95oCEdAn4PkT101ZXV9lChoBkdAcEcuaF23a2gHS9doCEdAn4SUNKAavXV9lChoBkdAc9amapgkT2gHS9loCEdAn4Smq5sj3XV9lChoBkdAcpW3eN1hcGgHS8doCEdAn4aNMXaakXV9lChoBkdAcfqrLQokRmgHS8VoCEdAn4bmBSUC73V9lChoBkdAYvBa/RE4N2gHTegDaAhHQJ+HF4xDb8F1fZQoaAZHQHMP9PtUn5VoB0vfaAhHQJ+HHiFTNt91fZQoaAZHQHATglByCFtoB0u4aAhHQJ+HVNO/L1V1fZQoaAZHQHERt34bjtJoB0vHaAhHQJ+Hglu3trt1fZQoaAZHQHDQBD1GsmxoB0vIaAhHQJ+HxKBd2Pl1fZQoaAZHQHEF9zKcNH9oB0vEaAhHQJ+IG19fCyh1fZQoaAZHQHF9Qn+hoM9oB0vsaAhHQJ+IRUMoc711fZQoaAZHQHCi4U34sVdoB0vLaAhHQJ+IfvF3pwF1fZQoaAZHQHIOJuQ6p5xoB0vOaAhHQJ+I/qdH2AZ1fZQoaAZHQHGlTh5xBE9oB0vFaAhHQJ+JZEXtSht1fZQoaAZHQHCJTZDiOvNoB0vhaAhHQJ+JtlOGj9J1fZQoaAZHQG58PH93r2RoB0vKaAhHQJ+KMB1cMVl1fZQoaAZHQHLtKwhW5pdoB0vjaAhHQJ+KyP91loV1fZQoaAZHQHIhpTIeYD1oB0vMaAhHQJ+MSrOqvNh1fZQoaAZHQHFj7nPmgapoB0vcaAhHQJ+MbyAhB7h1fZQoaAZHQHCyoScslLRoB0vbaAhHQJ+M4LkS26V1fZQoaAZHQHEPMVk+X7doB0vjaAhHQJ+NXTgEU0x1fZQoaAZHQHI9oduHerNoB0vSaAhHQJ+NYPbwjMV1fZQoaAZHQHNsPiT+vQpoB0v0aAhHQJ+NmW1MM7V1fZQoaAZHQHAnckIHC41oB0vFaAhHQJ+NnNke6qd1fZQoaAZHQHJg9rKvFFVoB0vnaAhHQJ+Np7eEZix1fZQoaAZHQG+mJHZsbedoB0vUaAhHQJ+NzDhtLth1fZQoaAZHQG6vkIPbwjNoB0u5aAhHQJ+OBkhA4XJ1fZQoaAZHQHHFJM+NcW1oB0vZaAhHQJ+OV8w5/9Z1fZQoaAZHQHDRnhCMPz5oB0vRaAhHQJ+PDOQhfSh1fZQoaAZHQHEzMFdLQHBoB0vSaAhHQJ+PZvhqCYl1fZQoaAZHQHCfnHJcPe5oB0vGaAhHQJ+PnImw7kp1fZQoaAZHQGQ2lTm4iHJoB03oA2gIR0Cfj9CA+Y+jdX2UKGgGR0Bw87JT2nKoaAdLw2gIR0CfkAyRjjJddX2UKGgGR0BvHDRKHwgDaAdLx2gIR0CfkYwOe8PGdX2UKGgGR0BxQEIjW07baAdL0WgIR0CfkabMottidX2UKGgGR0BzI2/mDDjzaAdLzmgIR0CfkhowVTJhdX2UKGgGR0Bx33R8c+7laAdLy2gIR0CfksK5kK/mdX2UKGgGR0BvzgLeANG3aAdLzmgIR0CfktO8kD6ndX2UKGgGR0Byp3u/k/8maAdL2mgIR0CfkvDuSfUXdX2UKGgGR0BxtPJZGKAKaAdL3GgIR0CfkwKO1fE5dX2UKGgGR0BxCgZNwiqyaAdL0WgIR0Cfkx6uW8h+dX2UKGgGR0Bw4FoL5RCQaAdL32gIR0Cfk0LQ5WBCdX2UKGgGR0BydIUmD15CaAdL2mgIR0Cfk72Yv38GdX2UKGgGR0BxpteLNwBHaAdL6WgIR0Cfk8sPJ7swdX2UKGgGR0BwFQuBczInaAdLx2gIR0Cfk/J2dNFjdX2UKGgGR0ByELied07saAdL4mgIR0CflNd+G47SdX2UKGgGR0ByvKDQJHAiaAdL3GgIR0CflN1vl2eQdX2UKGgGR0BzKYvSMLncaAdL0mgIR0CflQ4CIUJwdX2UKGgGR0BuCM34sVcmaAdL4mgIR0CflTntOVPfdX2UKGgGR0BwERZSvTw2aAdLumgIR0CflnhRqGlAdX2UKGgGR0Bw3bRKHwgDaAdL12gIR0Cflqai9IwudX2UKGgGR0BzuWH6/IsAaAdL8GgIR0Cfl97z06HTdX2UKGgGR0BymC7SRbKSaAdLxGgIR0CfmAnpSrHVdX2UKGgGR0Bt50mShakiaAdL1WgIR0CfmFbSZ0CBdX2UKGgGR0Bws9N21UlzaAdL2WgIR0CfmLinpB5YdX2UKGgGR0ByZn0Bfa6CaAdL8WgIR0CfmVPnB+F2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-unit1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4139ed4a69fc9e7b2d6d3af041493cfc2e88b94f4a5c6bcbcb262bd6698e5083
3
- size 146868
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3570885c78feca30e1cd2be05f877ffbfeb46e9c4e52fefaa6600b8267c9cda
3
+ size 146625
ppo-LunarLander-v2-unit1/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7c8c91074a60>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c8c91074af0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c8c91074b80>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c8c91074c10>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7c8c91074ca0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7c8c91074d30>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c8c91074dc0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c8c91074e50>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7c8c91074ee0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c8c91074f70>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c8c91075000>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c8c91075090>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7c8c9106d700>"
21
  },
22
- "verbose": 1,
23
  "policy_kwargs": {},
24
  "num_timesteps": 2015232,
25
  "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1691482247031474118,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM39pDwNfBk+StMWvUAej75IV3Q7hBbCOQAAAAAAAAAAZiZCurWfXz7gvLC85/KTvp1bszuDMEi9AAAAAAAAAAAaeFQ9Hi6hP9/cnj6b8iK/6oPZPIqTLj4AAAAAAAAAAMB8kz3szWc/vk9YPgDzMr+hSLQ9ziCbPQAAAAAAAAAAQOdKvsWTjz9jnwi/rnobv8yetr4FY76+AAAAAAAAAAAAZ/G8w8FeuozvoLTk81mv/9AkOdoFhjMAAIA/AACAPzMiqDyvzCU9mLRmvtWTHr5h3uy8ZOCZvQAAAAAAAAAAiz+mvv9QPj8Mcso9wS0iv7z8A7/d/zQ+AAAAAAAAAACmlea9w6krP42BWz3jaNS+ZkAkvoLutz0AAAAAAAAAAFqx5D0fRcG7TiTNvPR4/rxXkO28JWlIPgAAgD8AAAAAwBGIvYq3Cz5+0pA+vHuwvk/2rj33lSE9AAAAAAAAAACaKC6+Z3tIP69bBr51HAu/XGqovgq0RDwAAAAAAAAAADM7sLvDNWy4kuxvPcGMgzy1u9q5ON5lvQAAgD8AAIA/ujwcPhyJULyNpQM+XpaWvJ2oxb0m1nW9AACAPwAAgD8ab6M9+LGSPVI2tL27snW+SAYXPT3Z5jwAAAAAAAAAAIa7Or56fhE/+Em4PcnS4b75gDe+rV0oPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE+YgZjx0+2MAWyUS6qMAXSUR0Cxk/vHYHxCdX2UKGgGR0ByI6p97WupaAdL2WgIR0CxlCzpPhybdX2UKGgGR0BwI6U4aP0aaAdL0WgIR0CxlDUcwQDndX2UKGgGR0Bw52BDohZAaAdL52gIR0CxlHIV6/qPdX2UKGgGR0BwIYDGLk0aaAdL9mgIR0CxlIAr1/UfdX2UKGgGR0BzhAymALApaAdL6mgIR0CxlIPNiYsvdX2UKGgGR0Bv8g8wHqu9aAdLwmgIR0CxlJo1LrX2dX2UKGgGR0BxRQ9GI9DAaAdL1GgIR0CxlKIP9UCJdX2UKGgGR0BujsQiA2AHaAdLzGgIR0CxlKjlYEGJdX2UKGgGR0BzVzUSZjQRaAdLxmgIR0CxlP/xQSBcdX2UKGgGR0BwwHZ39rGjaAdL42gIR0CxlRDQzDXOdX2UKGgGR0BwGhRvWH1waAdL12gIR0CxlR23z+WGdX2UKGgGR0Bz3jeSB9ThaAdL4GgIR0CxlTvqoqCpdX2UKGgGR0BxGaNQ0oBraAdLxmgIR0CxlT6pDNQkdX2UKGgGR0ByiLSro4dZaAdLyGgIR0CxlUWPcSGrdX2UKGgGR0BzQ5bFCLMtaAdL/GgIR0CxlUhs2vSudX2UKGgGR0BweUr1/Ue/aAdL6WgIR0CxlUrbUPQOdX2UKGgGR0Bx6di5NGmUaAdL3mgIR0CxlYUSqU/wdX2UKGgGR0Bzy2JXQtz0aAdL02gIR0CxlbZkCmuUdX2UKGgGR0BQF0q6OHWSaAdLrWgIR0CxlbQRsdkrdX2UKGgGR0BxbpeNT987aAdL1WgIR0Cxlcqr7wazdX2UKGgGR0ByAkLc9GI9aAdL12gIR0CxldG1lXijdX2UKGgGR0By/q6Ae7tiaAdL1mgIR0Cxle8hLXcydX2UKGgGR0Bxt55UtI07aAdL8GgIR0Cxlg9GViWndX2UKGgGR0BzRt86V+qjaAdNMwFoCEdAsZYWr/82rHV9lChoBkdAcx0nanJkoWgHS71oCEdAsZY2801qFnV9lChoBkdAcSwn+Q2dd2gHS9VoCEdAsZrPuXu3MXV9lChoBkdAdAkXVLBbfWgHS+toCEdAsZrW+h4+r3V9lChoBkdAcS6byYoiLWgHS8RoCEdAsZriDM/yG3V9lChoBkdActmLeANG3GgHS9poCEdAsZr7EMspX3V9lChoBkdAcP9ha1TisGgHS+BoCEdAsZsL225QQHV9lChoBkdAb/1F1jiGWWgHS+ZoCEdAsZsa3trsSnV9lChoBkdAc1riHZbpvGgHS+BoCEdAsZtSXZ5AyHV9lChoBkdAcPFrxiG34WgHS9doCEdAsZt21/lQuXV9lChoBkdAcUBSL61stWgHS9ZoCEdAsZuO4rjHXHV9lChoBkdAclfUzsQd0mgHS+RoCEdAsZugG9pRGnV9lChoBkdAcPOHIZIg/2gHS+9oCEdAsZue5RTCL3V9lChoBkdAcHX08vEjxGgHS89oCEdAsZuk7JW/8HV9lChoBkdAMOmNipeeF2gHS5loCEdAsZvNiqhlDnV9lChoBkdAcW4QarFOwmgHS85oCEdAsZvM83dbgXV9lChoBkdAcJRxTsIE82gHS8BoCEdAsZvY/MW43HV9lChoBkdAcf8B+F10T2gHTQ0BaAhHQLGcLI065oZ1fZQoaAZHQHIFfdRBNVRoB0vQaAhHQLGcNsIVuaZ1fZQoaAZHQHCXBIe5nUVoB0u/aAhHQLGcRBTXJ5p1fZQoaAZHQHOXaZhKDkFoB0vmaAhHQLGcTvMKTjh1fZQoaAZHQHNV1Iqbz9VoB0vqaAhHQLGcdP2wmmd1fZQoaAZHQHL8znFHavloB0vXaAhHQLGcdv6j3251fZQoaAZHQFA5nssxwhpoB0upaAhHQLGcm1SwW311fZQoaAZHQHDdNO2y9mJoB0vbaAhHQLGcsqYJE6V1fZQoaAZHQG9GPDP4VRFoB0vOaAhHQLGc52eg+Ql1fZQoaAZHQHMO29cry2BoB0vSaAhHQLGc7+W4Vh11fZQoaAZHQHC1RKtga3toB0vZaAhHQLGc/+so2GZ1fZQoaAZHQHIub9/BnBdoB0v3aAhHQLGdBosZpBZ1fZQoaAZHQHNSCH6/IsBoB0vOaAhHQLGdFiblRxd1fZQoaAZHQHI5tqHoHLRoB0veaAhHQLGdPUDuBtl1fZQoaAZHQHCUdgrpaA5oB0vzaAhHQLGdUulGgBd1fZQoaAZHQHH4DyWiUPhoB0u3aAhHQLGdcuOS4e91fZQoaAZHQG55OEEkjX5oB0vSaAhHQLGdeM3qAz51fZQoaAZHQHBA6q4pc5doB0vJaAhHQLGdtDdP+GZ1fZQoaAZHQHBqraZhKDloB0v1aAhHQLGduHUMG5d1fZQoaAZHQHF1szVMEidoB0v8aAhHQLGd0xd6cAl1fZQoaAZHQHAv1xOtW+5oB0vaaAhHQLGd0tXgccV1fZQoaAZHQHJkULhJiAloB0u/aAhHQLGd5ki2Ujd1fZQoaAZHQElR40Mw1zhoB0ukaAhHQLGd9IvalDZ1fZQoaAZHQHBCUY0l7dBoB0u1aAhHQLGeBZPVNHp1fZQoaAZHQG4vjSPU8V5oB0vmaAhHQLGeCmnO0LN1fZQoaAZHQHIHCoCMglpoB0u0aAhHQLGeGPC2tuF1fZQoaAZHQG/DTn7pFCtoB0u+aAhHQLGeMUYbbUR1fZQoaAZHQHIz4ysS00FoB0vQaAhHQLGea6J66at1fZQoaAZHQHKsYFqzqr1oB0vjaAhHQLGexArQPZt1fZQoaAZHQHH/nBHkLhJoB0vhaAhHQLGe3oB7u2J1fZQoaAZHQHNn+NDMNc5oB0u4aAhHQLGfFBVMmF91fZQoaAZHQHC+ZbyH2ytoB0vraAhHQLGfJqebutx1fZQoaAZHQHRauws5GSZoB0vsaAhHQLGfMZyMkyF1fZQoaAZHQHGOGNedCmdoB0vnaAhHQLGffPPszEd1fZQoaAZHQHG11FlTWG1oB0vdaAhHQLGfiuFYdQx1fZQoaAZHQHJH1Bt1p0xoB0veaAhHQLGfjsgMc6x1fZQoaAZHQHNM1x0dRzloB0vSaAhHQLGfomcOLBN1fZQoaAZHQHNOlYU34sVoB0vcaAhHQLGf72hZha11fZQoaAZHQHG6t8qnWJ9oB0v/aAhHQLGf8NIbwSd1fZQoaAZHQHGJHEAHVwxoB0vyaAhHQLGgA94eLeh1fZQoaAZHQHDjrfk3juNoB0veaAhHQLGgFK3NLUV1fZQoaAZHQHEmcyeqaPVoB0vBaAhHQLGgE6pYLb51fZQoaAZHQHGZ5hrnDBNoB0v3aAhHQLGgGDQZ4wB1fZQoaAZHQG2LsuvllshoB0u+aAhHQLGgXlsP8Q91fZQoaAZHQGNLLzwtrbhoB03oA2gIR0CxoGs7EHdHdX2UKGgGR0BvKP8IiTt+aAdLy2gIR0CxoMc1baAXdX2UKGgGR0BxgVnSOR1YaAdL0GgIR0CxoOdMPBi1dX2UKGgGR0BysWLk0aZQaAdLzGgIR0CxoOwP3BYWdX2UKGgGR0Bwa+g3974SaAdNCAFoCEdAsaEciY9gW3V9lChoBkdAce99Dx9XtGgHS8BoCEdAsaEnEtNBW3V9lChoBkdAc40d6LOzIGgHS8hoCEdAsaEpuGbkO3V9lChoBkdAc3HXdj5KvmgHS9toCEdAsaFMvmHP/3V9lChoBkdAcbl9TxXnyWgHS+5oCEdAsaF3yqdYn3V9lChoBkdAcZYE7nxJ/WgHS8hoCEdAsaGBmpVCHHV9lChoBkdAceDfxMFlkGgHS9xoCEdAsaGUAn2IwnV9lChoBkdAcZ2afBeok2gHS9hoCEdAsaGjnB+F13V9lChoBkdAchR+VTrE+GgHS/NoCEdAsaG1b+tKZnV9lChoBkdAcEak5IYm9mgHS+loCEdAsaG+q+8Gs3V9lChoBkdAcVAjwQUYbmgHS9JoCEdAsaHVb3XZoXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
@@ -69,16 +69,16 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQU2d2tVWbJHrsgyAr1wWeXYwDaW5jlIoRUd7SfAt4EE5anVCEeRR5zQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
76
  "dtype": "int64",
77
- "_np_random": "Generator(PCG64)"
78
  },
79
  "n_envs": 16,
80
  "n_steps": 1024,
81
- "gamma": 0.995,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f643cbbd7e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f643cbbd870>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f643cbbd900>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f643cbbd990>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f643cbbda20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f643cbbdab0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f643cbbdb40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f643cbbdbd0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f643cbbdc60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f643cbbdcf0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f643cbbdd80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f643cbbde10>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f643cbb2d80>"
21
  },
22
+ "verbose": 0,
23
  "policy_kwargs": {},
24
  "num_timesteps": 2015232,
25
  "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1691565615178366348,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADHEb0rMOU9siD7vUWPr750aGi91cBbvQAAAAAAAAAAjdQCvp35TT9uXu69GUPvvi0eT77Gq4M9AAAAAAAAAAAA0Fo8XM9guj6MvbMXCPGsr34du0pKpDMAAIA/AACAPzCnn77JJ1Q/tBssPrCi377Qaoe+sKZsPgAAAAAAAAAAAE/NPOtusD+CqKc+JIGSvs1VIzy24RQ+AAAAAAAAAADN3Ia6FLDDuie6NLzNEIo8+5mpO64ZcL0AAIA/AACAPxqJ1j2/gWg+hCALvmBksb4NcAA7bmP2PAAAAAAAAAAAwH4HvrRxPj8CtQQ+/wXivpl9ob3pXoA9AAAAAAAAAADGniu+pmJrP3Z4Sb5TkgW//HPAvkTitDsAAAAAAAAAAABgsTtxvXy5YLWDtoI4a7HHVRC7ogybNQAAgD8AAIA/YPtqPvORnD/HwxM/kKkgv5cEwD5ARSQ+AAAAAAAAAAAA5ok8XyDXPBLL771XSqK+dKQqO50Mb7wAAAAAAAAAAI0Spj2PCmy6gtBsPXSFBbKCWHW7YszSMgAAgD8AAIA/ZnSrPXq0wT8kX5s+cCwMvgaZWrwla/A9AAAAAAAAAACAVsa99mwLPaqRLj7NCZW+oE5CPYzKtjwAAAAAAAAAAE3zAz2uS5u6ZFGwtBtiArCStgg7ccpGMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGhfW1+iJyMAWyUS8KMAXSUR0CfW+lZHNHIdX2UKGgGR0BvLCqlxffGaAdL0WgIR0CfXBUPQOWjdX2UKGgGR0BxEidVea8ZaAdL1WgIR0CfXDvF3pwCdX2UKGgGR0BzJ/hcZ9/jaAdL+2gIR0CfXFgZCOWCdX2UKGgGR0Bwoso8ZDRdaAdLzGgIR0CfXgczImw8dX2UKGgGR0BxpJ/Tb349aAdLwmgIR0CfXzjy4FzNdX2UKGgGR0BzmRMQEpy7aAdLyGgIR0CfX1hd+ocadX2UKGgGR0BxHfe3x4IKaAdL2WgIR0CfX3q9XcQAdX2UKGgGR0ByG3J8v24/aAdL2WgIR0CfX9uvUz9CdX2UKGgGR0BxELg75mAcaAdLzmgIR0CfYByfL9uQdX2UKGgGR0BvLpDLKV6eaAdLyWgIR0CfYC0nPVurdX2UKGgGR0BygQicG1QZaAdL2WgIR0CfYFi5d4VzdX2UKGgGR0BznIcU/OdHaAdLy2gIR0CfYL4EwFkhdX2UKGgGR0BwYtmseXAuaAdL4mgIR0CfYYyJsO5KdX2UKGgGR0BzUNikO7QLaAdLz2gIR0CfYfeY2Kl6dX2UKGgGR0BwVRs/IKc/aAdLzWgIR0CfYlA3DNyHdX2UKGgGR0Bw/gLSeAd5aAdL1WgIR0CfYlzshPj5dX2UKGgGR0BxYrjOs1baaAdL12gIR0CfYrGgzxgBdX2UKGgGR0BxJ/o+wC8waAdLzmgIR0CfZmUBXCCSdX2UKGgGR0BuW1mvnr6daAdLzGgIR0CfZm57PY4AdX2UKGgGR0Bx0diLEUCaaAdLxGgIR0CfZuUBnzxxdX2UKGgGR0ByZX8n/kvLaAdLxmgIR0CfZ2JcPe54dX2UKGgGR0BzjSe8PFvRaAdLzWgIR0CfZ8PTG5tndX2UKGgGR0B0W+cZtNzsaAdL9mgIR0CfaItix3V1dX2UKGgGR0BxsKAbyYoiaAdL4WgIR0CfaOeSB9ThdX2UKGgGR0BwmvynUDuCaAdL32gIR0CfaWQsPJ7tdX2UKGgGR0Bwb1mpVCHAaAdLw2gIR0CfafdoWYWtdX2UKGgGR0ByiZBkZrHmaAdL02gIR0Cfagnx8UmEdX2UKGgGR0BwpEZflZHNaAdLyWgIR0CfaqsmOU+tdX2UKGgGR0BjCurQw9JSaAdN6ANoCEdAn2qqsuFpPHV9lChoBkdAcDamixmkFmgHS9toCEdAn35KYzBRAXV9lChoBkdAcZlpdKNADGgHS+doCEdAn35SKFZgX3V9lChoBkdAci2/EwWWQmgHS8toCEdAn4BuGoJiRXV9lChoBkdAb75lxwQ18GgHS8hoCEdAn4CrA+IM0HV9lChoBkdAbpk9nscABGgHS8loCEdAn4EEyk9EC3V9lChoBkdAc0kdadMCcWgHS+xoCEdAn4GIc7yQP3V9lChoBkdAc7A+ZgG8mWgHS9RoCEdAn4GroB7u2XV9lChoBkdAcYEsxO+IuWgHS8NoCEdAn4H0bcXWOXV9lChoBkdActPyksSTQmgHS81oCEdAn4H+Jxeb/nV9lChoBkdAcM+0pmVZ92gHS7xoCEdAn4KBGQSzxHV9lChoBkdAcqmlQdjoZGgHS8NoCEdAn4K5aq0dBHV9lChoBkdAbdmzrNW2gGgHS8ZoCEdAn4M7RfF72XV9lChoBkdAciiH6/IsAmgHS+xoCEdAn4NyOJcgQ3V9lChoBkdAcsUuaF23a2gHS95oCEdAn4PkT101ZXV9lChoBkdAcEcuaF23a2gHS9doCEdAn4SUNKAavXV9lChoBkdAc9amapgkT2gHS9loCEdAn4Smq5sj3XV9lChoBkdAcpW3eN1hcGgHS8doCEdAn4aNMXaakXV9lChoBkdAcfqrLQokRmgHS8VoCEdAn4bmBSUC73V9lChoBkdAYvBa/RE4N2gHTegDaAhHQJ+HF4xDb8F1fZQoaAZHQHMP9PtUn5VoB0vfaAhHQJ+HHiFTNt91fZQoaAZHQHATglByCFtoB0u4aAhHQJ+HVNO/L1V1fZQoaAZHQHERt34bjtJoB0vHaAhHQJ+Hglu3trt1fZQoaAZHQHDQBD1GsmxoB0vIaAhHQJ+HxKBd2Pl1fZQoaAZHQHEF9zKcNH9oB0vEaAhHQJ+IG19fCyh1fZQoaAZHQHF9Qn+hoM9oB0vsaAhHQJ+IRUMoc711fZQoaAZHQHCi4U34sVdoB0vLaAhHQJ+IfvF3pwF1fZQoaAZHQHIOJuQ6p5xoB0vOaAhHQJ+I/qdH2AZ1fZQoaAZHQHGlTh5xBE9oB0vFaAhHQJ+JZEXtSht1fZQoaAZHQHCJTZDiOvNoB0vhaAhHQJ+JtlOGj9J1fZQoaAZHQG58PH93r2RoB0vKaAhHQJ+KMB1cMVl1fZQoaAZHQHLtKwhW5pdoB0vjaAhHQJ+KyP91loV1fZQoaAZHQHIhpTIeYD1oB0vMaAhHQJ+MSrOqvNh1fZQoaAZHQHFj7nPmgapoB0vcaAhHQJ+MbyAhB7h1fZQoaAZHQHCyoScslLRoB0vbaAhHQJ+M4LkS26V1fZQoaAZHQHEPMVk+X7doB0vjaAhHQJ+NXTgEU0x1fZQoaAZHQHI9oduHerNoB0vSaAhHQJ+NYPbwjMV1fZQoaAZHQHNsPiT+vQpoB0v0aAhHQJ+NmW1MM7V1fZQoaAZHQHAnckIHC41oB0vFaAhHQJ+NnNke6qd1fZQoaAZHQHJg9rKvFFVoB0vnaAhHQJ+Np7eEZix1fZQoaAZHQG+mJHZsbedoB0vUaAhHQJ+NzDhtLth1fZQoaAZHQG6vkIPbwjNoB0u5aAhHQJ+OBkhA4XJ1fZQoaAZHQHHFJM+NcW1oB0vZaAhHQJ+OV8w5/9Z1fZQoaAZHQHDRnhCMPz5oB0vRaAhHQJ+PDOQhfSh1fZQoaAZHQHEzMFdLQHBoB0vSaAhHQJ+PZvhqCYl1fZQoaAZHQHCfnHJcPe5oB0vGaAhHQJ+PnImw7kp1fZQoaAZHQGQ2lTm4iHJoB03oA2gIR0Cfj9CA+Y+jdX2UKGgGR0Bw87JT2nKoaAdLw2gIR0CfkAyRjjJddX2UKGgGR0BvHDRKHwgDaAdLx2gIR0CfkYwOe8PGdX2UKGgGR0BxQEIjW07baAdL0WgIR0CfkabMottidX2UKGgGR0BzI2/mDDjzaAdLzmgIR0CfkhowVTJhdX2UKGgGR0Bx33R8c+7laAdLy2gIR0CfksK5kK/mdX2UKGgGR0BvzgLeANG3aAdLzmgIR0CfktO8kD6ndX2UKGgGR0Byp3u/k/8maAdL2mgIR0CfkvDuSfUXdX2UKGgGR0BxtPJZGKAKaAdL3GgIR0CfkwKO1fE5dX2UKGgGR0BxCgZNwiqyaAdL0WgIR0Cfkx6uW8h+dX2UKGgGR0Bw4FoL5RCQaAdL32gIR0Cfk0LQ5WBCdX2UKGgGR0BydIUmD15CaAdL2mgIR0Cfk72Yv38GdX2UKGgGR0BxpteLNwBHaAdL6WgIR0Cfk8sPJ7swdX2UKGgGR0BwFQuBczInaAdLx2gIR0Cfk/J2dNFjdX2UKGgGR0ByELied07saAdL4mgIR0CflNd+G47SdX2UKGgGR0ByvKDQJHAiaAdL3GgIR0CflN1vl2eQdX2UKGgGR0BzKYvSMLncaAdL0mgIR0CflQ4CIUJwdX2UKGgGR0BuCM34sVcmaAdL4mgIR0CflTntOVPfdX2UKGgGR0BwERZSvTw2aAdLumgIR0CflnhRqGlAdX2UKGgGR0Bw3bRKHwgDaAdL12gIR0Cflqai9IwudX2UKGgGR0BzuWH6/IsAaAdL8GgIR0Cfl97z06HTdX2UKGgGR0BymC7SRbKSaAdLxGgIR0CfmAnpSrHVdX2UKGgGR0Bt50mShakiaAdL1WgIR0CfmFbSZ0CBdX2UKGgGR0Bws9N21UlzaAdL2WgIR0CfmLinpB5YdX2UKGgGR0ByZn0Bfa6CaAdL8WgIR0CfmVPnB+F2dWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
76
  "dtype": "int64",
77
+ "_np_random": null
78
  },
79
  "n_envs": 16,
80
  "n_steps": 1024,
81
+ "gamma": 0.99,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
ppo-LunarLander-v2-unit1/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bdfff88c3f8de1397c740eea2e74d4f0961770bfc57cb916cb057e8c2942d3ab
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c968573036b43ed33f6135150bf427a089ceba4de1a2e1e1fe23e4185ec31ff
3
  size 87929
ppo-LunarLander-v2-unit1/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:108fc96ed622303e2d6e7e930959ba205d076f7ce2d2a9fcc2255b85dbc7fb16
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:234d5187342f1216ea621bc75c7fa77a2050c3d48ebc1371200503524373ddd3
3
  size 43329
ppo-LunarLander-v2-unit1/system_info.txt CHANGED
@@ -3,7 +3,7 @@
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
- - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
 
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 279.558691, "std_reward": 23.006181879968683, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-08T08:47:47.869344"}
 
1
+ {"mean_reward": 286.3327763, "std_reward": 25.60322481131722, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-09T07:56:01.603222"}