MPNet base trained on AllNLI-turkish triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli-triplets-turkish dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v2")
# Run inference
sentences = [
'Böyle şeyler görmek ve eğer yapabileceğiniz en küçük bir şey varsa, bu yardımcı olur.',
'Böyle bir şeyi gözlemlemek ve yapıp yapamayacağınızı bilmek için.',
'Böyle bir şeyi görmek kötü, eğer yapabiliyorsanız buna hiç katkıda bulunmayın.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
all-nli-dev-turkish
andall-nli-test-turkish
- Evaluated with
TripletEvaluator
Metric | all-nli-dev-turkish | all-nli-test-turkish |
---|---|---|
cosine_accuracy | 0.7454 | 0.7525 |
Training Details
Training Dataset
all-nli-triplets-turkish
- Dataset: all-nli-triplets-turkish at bff203b
- Size: 13,842 training samples
- Columns:
anchor_translated
,positive_translated
, andnegative_translated
- Approximate statistics based on the first 1000 samples:
anchor_translated positive_translated negative_translated type string string string details - min: 8 tokens
- mean: 13.42 tokens
- max: 95 tokens
- min: 8 tokens
- mean: 31.64 tokens
- max: 93 tokens
- min: 6 tokens
- mean: 32.03 tokens
- max: 89 tokens
- Samples:
anchor_translated positive_translated negative_translated Asyalı okul çocukları birbirlerinin omuzlarında oturuyor.
Okul çocukları bir arada
Asyalı fabrika işçileri oturuyor.
İnsanlar dışarıda.
Arka planda resmi kıyafetler giymiş bir grup insan var ve beyaz gömlekli, haki pantolonlu bir adam toprak yoldan yeşil çimenlere atlıyor.
Bir odada üç kişiyle birlikte büyük bir kamera tutan bir adam.
Bir adam dışarıda.
Adam yarış sırasında yan sepetten bir su birikintisine düşer.
Beyaz bir sarık sarmış gömleksiz bir adam bir ağaç gövdesine tırmanıyor.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli-triplets-turkish
- Dataset: all-nli-triplets-turkish at bff203b
- Size: 6,584 evaluation samples
- Columns:
anchor_translated
,positive_translated
, andnegative_translated
- Approximate statistics based on the first 1000 samples:
anchor_translated positive_translated negative_translated type string string string details - min: 5 tokens
- mean: 42.62 tokens
- max: 192 tokens
- min: 5 tokens
- mean: 22.58 tokens
- max: 77 tokens
- min: 5 tokens
- mean: 22.07 tokens
- max: 65 tokens
- Samples:
anchor_translated positive_translated negative_translated Ayrıca, bu özel tüketim vergileri, diğer vergiler gibi, hükümetin ödeme zorunluluğunu sağlama yetkisini kullanarak belirlenir.
Hükümetin ödeme zorlaması, özel tüketim vergilerinin nasıl hesaplandığını belirler.
Özel tüketim vergileri genel kuralın bir istisnasıdır ve aslında GSYİH payına dayalı olarak belirlenir.
Gri bir sweatshirt giymiş bir sanatçı, canlı renklerde bir kasaba tablosu üzerinde çalışıyor.
Bir ressam gri giysiler içinde bir kasabanın resmini yapıyor.
Bir kişi bir beyzbol sopası tutuyor ve gelen bir atış için planda bekliyor.
İmkansız.
Yapılamaz.
Tamamen mümkün.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | all-nli-dev-turkish_cosine_accuracy | all-nli-test-turkish_cosine_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6092 | - |
0.1155 | 100 | 2.7414 | 1.6615 | 0.7429 | - |
0.2309 | 200 | 1.64 | 1.4650 | 0.7483 | - |
0.3464 | 300 | 1.2391 | 1.4068 | 0.7561 | - |
0.4619 | 400 | 1.1146 | 1.4367 | 0.7549 | - |
0.5774 | 500 | 1.0341 | 1.4887 | 0.7486 | - |
0.6928 | 600 | 0.7568 | 1.4568 | 0.7535 | - |
0.8083 | 700 | 0.7216 | 1.5680 | 0.7451 | - |
0.9238 | 800 | 0.5919 | 1.5492 | 0.7454 | - |
1.0 | 866 | - | - | - | 0.7525 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.3.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mertcobanov/mpnet-base-all-nli-triplet-turkish-v2
Base model
microsoft/mpnet-baseDataset used to train mertcobanov/mpnet-base-all-nli-triplet-turkish-v2
Evaluation results
- Cosine Accuracy on all nli dev turkishself-reported0.745
- Cosine Accuracy on all nli test turkishself-reported0.752