File size: 1,634 Bytes
0992a31 c0dc01e 0992a31 c0dc01e 0992a31 c0dc01e 0992a31 c0dc01e 0992a31 c0dc01e 0992a31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: chatgpt-prompt-generator-v12
results: []
---
# ChatGPT Prompt Generator v12
This model is a fine-tuned version of [BART-large](https://huggingface.co/facebook/bart-large) on a ChatGPT prompts dataset.
It achieves the following results on the evaluation set:
It achieves the following results on the evaluation set:
- Train Loss: 2.4800
- Validation Loss: 2.7320
- Epoch: 4
## Intended uses & limitations
You can use this to generate ChatGPT personas. Simply input a persona like below:
```
from transformers import BartForConditionalGeneration, BartTokenizer
example_english_phrase = "photographer"
batch = tokenizer(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"], max_new_tokens=150)
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 5.3808 | 3.3133 | 0 |
| 3.2642 | 3.0104 | 1 |
| 2.8886 | 2.8600 | 2 |
| 2.6594 | 2.7949 | 3 |
| 2.4800 | 2.7320 | 4 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|