File size: 8,983 Bytes
3fe2b90 6846f88 3fe2b90 f13808d 6846f88 3fe2b90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: example.pkl
widget:
structuredData:
area error:
- 30.29
- 96.05
- 48.31
compactness error:
- 0.01911
- 0.01652
- 0.01484
concave points error:
- 0.01037
- 0.0137
- 0.01093
concavity error:
- 0.02701
- 0.02269
- 0.02813
fractal dimension error:
- 0.003586
- 0.001698
- 0.002461
mean area:
- 481.9
- 1130.0
- 748.9
mean compactness:
- 0.1058
- 0.1029
- 0.1223
mean concave points:
- 0.03821
- 0.07951
- 0.08087
mean concavity:
- 0.08005
- 0.108
- 0.1466
mean fractal dimension:
- 0.06373
- 0.05461
- 0.05796
mean perimeter:
- 81.09
- 123.6
- 101.7
mean radius:
- 12.47
- 18.94
- 15.46
mean smoothness:
- 0.09965
- 0.09009
- 0.1092
mean symmetry:
- 0.1925
- 0.1582
- 0.1931
mean texture:
- 18.6
- 21.31
- 19.48
perimeter error:
- 2.497
- 5.486
- 3.094
radius error:
- 0.3961
- 0.7888
- 0.4743
smoothness error:
- 0.006953
- 0.004444
- 0.00624
symmetry error:
- 0.01782
- 0.01386
- 0.01397
texture error:
- 1.044
- 0.7975
- 0.7859
worst area:
- 677.9
- 1866.0
- 1156.0
worst compactness:
- 0.2378
- 0.2336
- 0.2394
worst concave points:
- 0.1015
- 0.1789
- 0.1514
worst concavity:
- 0.2671
- 0.2687
- 0.3791
worst fractal dimension:
- 0.0875
- 0.06589
- 0.08019
worst perimeter:
- 96.05
- 165.9
- 124.9
worst radius:
- 14.97
- 24.86
- 19.26
worst smoothness:
- 0.1426
- 0.1193
- 0.1546
worst symmetry:
- 0.3014
- 0.2551
- 0.2837
worst texture:
- 24.64
- 26.58
- 26.0
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|---------|
| ccp_alpha | 0.0 |
| class_weight | |
| criterion | gini |
| max_depth | |
| max_features | |
| max_leaf_nodes | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| random_state | |
| splitter | best |
</details>
### Model Plot
The model plot is below.
<style>#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 {color: black;background-color: white;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 pre{padding: 0;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-toggleable {background-color: white;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-item {z-index: 1;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-parallel-item:only-child::after {width: 0;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-0ada814d-e755-4f94-ac65-366fe1cb2fc1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>DecisionTreeClassifier()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9e34ce5b-ad79-4a87-995a-da43ae6e41ca" type="checkbox" checked><label for="9e34ce5b-ad79-4a87-995a-da43ae6e41ca" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier()</pre></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|---------|
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
import joblib
import json
import pandas as pd
clf = joblib.load(example.pkl)
with open("config.json") as f:
config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
```
</details>
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
``` |