Meta-Llama-3-8B-Instruct-function-calling-json-mode-VisitorRequests
This model is a fine-tuned version of hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7458
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0583 | 0.0630 | 1 | 3.3171 |
3.2898 | 0.1260 | 2 | 1.8112 |
1.7495 | 0.1890 | 3 | 1.3350 |
1.3176 | 0.2520 | 4 | 5.6302 |
5.9627 | 0.3150 | 5 | 2.1688 |
2.1926 | 0.3780 | 6 | 1.4297 |
1.3724 | 0.4409 | 7 | 1.2279 |
1.2125 | 0.5039 | 8 | 0.9445 |
0.9749 | 0.5669 | 9 | 1.1901 |
1.2164 | 0.6299 | 10 | 0.9843 |
0.9808 | 0.6929 | 11 | 0.9213 |
0.8698 | 0.7559 | 12 | 0.8721 |
0.8668 | 0.8189 | 13 | 0.9308 |
0.8635 | 0.8819 | 14 | 0.8319 |
0.7789 | 0.9449 | 15 | 0.8164 |
0.7402 | 1.0079 | 16 | 0.8220 |
0.7312 | 1.0709 | 17 | 0.8305 |
0.7561 | 1.1339 | 18 | 0.9768 |
0.9879 | 1.1969 | 19 | 0.8437 |
0.7647 | 1.2598 | 20 | 0.8364 |
0.7093 | 1.3228 | 21 | 0.8028 |
0.7358 | 1.3858 | 22 | 0.8184 |
0.7301 | 1.4488 | 23 | 0.8050 |
0.7607 | 1.5118 | 24 | 0.7652 |
0.6892 | 1.5748 | 25 | 0.7317 |
0.7158 | 1.6378 | 26 | 0.7236 |
0.6701 | 1.7008 | 27 | 0.7130 |
0.6905 | 1.7638 | 28 | 0.7529 |
0.6791 | 1.8268 | 29 | 0.7813 |
0.7093 | 1.8898 | 30 | 0.7458 |
Framework versions
- PEFT 0.5.0
- Transformers 4.44.0
- Pytorch 2.1.0+cu118
- Datasets 2.16.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for mg11/Meta-Llama-3-8B-Instruct-function-calling-json-mode-VisitorRequests
Base model
meta-llama/Meta-Llama-3-8B-Instruct