mgalkin's picture
modeling script
89650c1
raw
history blame
17.8 kB
#include <ATen/cuda/CUDAContext.h>
#include <THC/THCAtomics.cuh>
#include "util.cuh"
#include "operator.cuh"
#include "rspmm.h"
namespace at {
// Memory & time efficient implementation of generalized spmm
// Much of the code is inspired by GE-SpMM
// https://github.com/hgyhungry/ge-spmm
namespace {
const int kCoarseningFactor = 2;
const int kThreadPerBlock = 256;
} // namespace anonymous
template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_forward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
scalar_t *output,
int64_t num_row, int64_t nnz, int64_t dim) {
// for best optimization, the following code is compiled with constant warpSize
assert(blockDim.x == warpSize);
extern __shared__ int64_t buffer[];
int64_t *col_ind_buf = buffer;
int64_t *layer_ind_buf = buffer + blockDim.y * warpSize;
scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
col_ind_buf += threadIdx.y * warpSize;
layer_ind_buf += threadIdx.y * warpSize;
weight_buf += threadIdx.y * warpSize;
int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
if (row >= num_row)
return;
int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
int64_t ptr_start = row_ptr[row];
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
scalar_t out[kCoarseningFactor];
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++)
out[i] = NaryOp::zero;
for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
int64_t ptr = block_ptr + threadIdx.x;
if (ptr < ptr_end) {
col_ind_buf[threadIdx.x] = col_ind[ptr];
layer_ind_buf[threadIdx.x] = layer_ind[ptr];
weight_buf[threadIdx.x] = weight[ptr];
}
__syncwarp();
int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
int64_t col = col_ind_buf[offset_ptr];
int64_t layer = layer_ind_buf[offset_ptr];
scalar_t w = weight_buf[offset_ptr];
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
scalar_t x = BinaryOp::forward(relation[layer * dim + d], input[col * dim + d]);
scalar_t y = w * x;
out[i] = NaryOp::forward(out[i], y);
}
}
__syncwarp();
}
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
output[row * dim + d] = out[i];
}
}
template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
const scalar_t *output, const scalar_t *output_grad,
scalar_t *weight_grad, scalar_t *relation_grad, scalar_t *input_grad,
int64_t num_row, int64_t nnz, int64_t dim) {
// for best optimization, the following code is compiled with constant warpSize
assert(blockDim.x == warpSize);
extern __shared__ int64_t buffer[];
int64_t *col_ind_buf = buffer;
int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize;
scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
col_ind_buf += threadIdx.y * warpSize;
layer_ind_buf += threadIdx.y * warpSize;
weight_buf += threadIdx.y * warpSize;
int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
if (row >= num_row)
return;
int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
int64_t ptr_start = row_ptr[row];
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
int64_t ptr = block_ptr + threadIdx.x;
if (ptr < ptr_end) {
col_ind_buf[threadIdx.x] = col_ind[ptr];
layer_ind_buf[threadIdx.x] = layer_ind[ptr];
weight_buf[threadIdx.x] = weight[ptr];
}
__syncwarp();
int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
int64_t col = col_ind_buf[offset_ptr];
int64_t layer = layer_ind_buf[offset_ptr];
scalar_t w = weight_buf[offset_ptr];
scalar_t w_grad = 0;
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
scalar_t rel = relation[layer * dim + d];
scalar_t in = input[col * dim + d];
scalar_t out = output[row * dim + d];
scalar_t out_grad = output_grad[row * dim + d];
scalar_t x = BinaryOp::forward(rel, in);
scalar_t y = w * x;
scalar_t dx_drel = BinaryOp::backward_lhs(rel, in);
scalar_t dx_din = BinaryOp::backward_rhs(rel, in);
scalar_t dout_dy = NaryOp::backward(out, y);
scalar_t dy_dw = x;
scalar_t dy_dx = w;
w_grad += out_grad * dout_dy * dy_dw;
atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel);
atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din);
}
w_grad = warp_reduce(w_grad);
if (threadIdx.x == 0)
atomicAdd(&weight_grad[block_ptr + offset_ptr], w_grad);
}
__syncwarp();
}
}
// only relation & input require gradients
template <class scalar_t, class NaryOp, class BinaryOp>
__global__
void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
const scalar_t *output, const scalar_t *output_grad,
scalar_t *relation_grad, scalar_t *input_grad,
int64_t num_row, int64_t nnz, int64_t dim) {
// for best optimization, the following code is compiled with constant warpSize
assert(blockDim.x == warpSize);
extern __shared__ int64_t buffer[];
int64_t *col_ind_buf = buffer;
int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize;
scalar_t *weight_buf = reinterpret_cast<scalar_t *>(layer_ind_buf + blockDim.y * warpSize);
col_ind_buf += threadIdx.y * warpSize;
layer_ind_buf += threadIdx.y * warpSize;
weight_buf += threadIdx.y * warpSize;
int64_t row = blockIdx.x * blockDim.y + threadIdx.y;
if (row >= num_row)
return;
int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x;
int64_t ptr_start = row_ptr[row];
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) {
int64_t ptr = block_ptr + threadIdx.x;
if (ptr < ptr_end) {
col_ind_buf[threadIdx.x] = col_ind[ptr];
layer_ind_buf[threadIdx.x] = layer_ind[ptr];
weight_buf[threadIdx.x] = weight[ptr];
}
__syncwarp();
int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr;
for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) {
int64_t col = col_ind_buf[offset_ptr];
int64_t layer = layer_ind_buf[offset_ptr];
scalar_t w = weight_buf[offset_ptr];
#pragma unroll
for (int64_t i = 0; i < kCoarseningFactor; i++) {
int64_t d = d_start + i * warpSize;
if (d >= dim)
break;
scalar_t rel = relation[layer * dim + d];
scalar_t in = input[col * dim + d];
scalar_t out = output[row * dim + d];
scalar_t out_grad = output_grad[row * dim + d];
scalar_t x = BinaryOp::forward(rel, in);
scalar_t y = w * x;
scalar_t dx_drel = BinaryOp::backward_lhs(rel, in);
scalar_t dx_din = BinaryOp::backward_rhs(rel, in);
scalar_t dout_dy = NaryOp::backward(out, y);
scalar_t dy_dx = w;
atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel);
atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din);
}
}
__syncwarp();
}
}
template <template<class> class NaryOp, template<class> class BinaryOp>
Tensor rspmm_forward_cuda(const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
const Tensor &relation_, const Tensor &input_) {
constexpr const char *fn_name = "rspmm_forward_cuda";
TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
input_arg(input_, "input", 5);
rspmm_forward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg);
checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg});
const Tensor edge_index = edge_index_.contiguous();
const Tensor edge_type = edge_type_.contiguous();
const Tensor edge_weight = edge_weight_.contiguous();
const Tensor relation = relation_.contiguous();
const Tensor input = input_.contiguous();
int64_t nnz = edge_index.size(0);
int64_t num_row = input.size(0);
int64_t dim = input.size(1);
Tensor output = at::empty({num_row, dim}, input.options());
Tensor row_ind = edge_index.select(0, 0);
Tensor row_ptr = ind2ptr(row_ind, num_row);
Tensor col_ind = edge_index.select(0, 1);
Tensor layer_ind = edge_type;
cudaSetDevice(input.get_device());
auto stream = at::cuda::getCurrentCUDAStream();
const int dim_per_block = 32; // warpSize
const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor);
const int row_per_block = kThreadPerBlock / dim_per_block;
const int num_row_block = (num_row + row_per_block - 1) / row_per_block;
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_forward_cuda", [&] {
const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
rspmm_forward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
<<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
row_ptr.data_ptr<int64_t>(),
col_ind.data_ptr<int64_t>(),
layer_ind.data_ptr<int64_t>(),
edge_weight.data_ptr<scalar_t>(),
relation.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
num_row, nnz, dim
);
});
return output;
}
template <template<class> class NaryOp, template<class> class BinaryOp>
std::tuple<Tensor, Tensor, Tensor> rspmm_backward_cuda(
const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
const Tensor &relation_, const Tensor &input_, const Tensor &output_, const Tensor &output_grad_) {
constexpr const char *fn_name = "rspmm_backward_cuda";
TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
input_arg(input_, "input", 5), output_arg(output_, "output", 6),
output_grad_arg(output_grad_, "output_grad", 7);
rspmm_backward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg,
output_arg, output_grad_arg);
checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg, output_arg,
output_grad_arg});
const Tensor edge_index = edge_index_.contiguous();
const Tensor edge_type = edge_type_.contiguous();
const Tensor edge_weight = edge_weight_.contiguous();
const Tensor relation = relation_.contiguous();
const Tensor input = input_.contiguous();
const Tensor output = output_.contiguous();
const Tensor output_grad = output_grad_.contiguous();
int64_t nnz = edge_index.size(0);
int64_t num_row = input.size(0);
int64_t dim = input.size(1);
Tensor weight_grad = at::zeros_like(edge_weight);
Tensor relation_grad = at::zeros_like(relation);
Tensor input_grad = at::zeros_like(input);
Tensor row_ind = edge_index.select(0, 0);
Tensor row_ptr = ind2ptr(row_ind, num_row);
Tensor col_ind = edge_index.select(0, 1);
Tensor layer_ind = edge_type;
cudaSetDevice(input.get_device());
auto stream = at::cuda::getCurrentCUDAStream();
const int dim_per_block = 32; // warpSize
const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor);
const int row_per_block = kThreadPerBlock / dim_per_block;
const int num_row_block = (num_row + row_per_block - 1) / row_per_block;
if (edge_weight.requires_grad())
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] {
const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
rspmm_backward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
<<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
row_ptr.data_ptr<int64_t>(),
col_ind.data_ptr<int64_t>(),
layer_ind.data_ptr<int64_t>(),
edge_weight.data_ptr<scalar_t>(),
relation.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
output_grad.data_ptr<scalar_t>(),
weight_grad.data_ptr<scalar_t>(),
relation_grad.data_ptr<scalar_t>(),
input_grad.data_ptr<scalar_t>(),
num_row, nnz, dim
);
});
else
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] {
const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t));
rspmm_backward_out_cuda<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>
<<<dim3(num_row_block, num_dim_block), dim3(dim_per_block, row_per_block), memory_size, stream>>>(
row_ptr.data_ptr<int64_t>(),
col_ind.data_ptr<int64_t>(),
layer_ind.data_ptr<int64_t>(),
edge_weight.data_ptr<scalar_t>(),
relation.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
output_grad.data_ptr<scalar_t>(),
relation_grad.data_ptr<scalar_t>(),
input_grad.data_ptr<scalar_t>(),
num_row, nnz, dim
);
});
return std::make_tuple(weight_grad, relation_grad, input_grad);
}
#define DECLARE_FORWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
Tensor rspmm_##ADD##_##MUL##_forward_cuda( \
const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \
const Tensor &relation, const Tensor &input) { \
return rspmm_forward_cuda<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input); \
}
#define DECLARE_BACKWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
std::tuple<Tensor, Tensor, Tensor> rspmm_##ADD##_##MUL##_backward_cuda( \
const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \
const Tensor &relation, const Tensor &input, const Tensor &output, const Tensor &output_grad) { \
return rspmm_backward_cuda<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input, \
output, output_grad); \
}
DECLARE_FORWARD_IMPL(add, mul, NaryAdd, BinaryMul)
DECLARE_BACKWARD_IMPL(add, mul, NaryAdd, BinaryMul)
DECLARE_FORWARD_IMPL(min, mul, NaryMin, BinaryMul)
DECLARE_BACKWARD_IMPL(min, mul, NaryMin, BinaryMul)
DECLARE_FORWARD_IMPL(max, mul, NaryMax, BinaryMul)
DECLARE_BACKWARD_IMPL(max, mul, NaryMax, BinaryMul)
DECLARE_FORWARD_IMPL(add, add, NaryAdd, BinaryAdd)
DECLARE_BACKWARD_IMPL(add, add, NaryAdd, BinaryAdd)
DECLARE_FORWARD_IMPL(min, add, NaryMin, BinaryAdd)
DECLARE_BACKWARD_IMPL(min, add, NaryMin, BinaryAdd)
DECLARE_FORWARD_IMPL(max, add, NaryMax, BinaryAdd)
DECLARE_BACKWARD_IMPL(max, add, NaryMax, BinaryAdd)
} // namespace at