manu commited on
Commit
20f1115
1 Parent(s): 2b31fed

Upload folder using huggingface_hub

Browse files
Files changed (45) hide show
  1. .gitattributes +3 -0
  2. checkpoint-6100/1_Pooling/config.json +10 -0
  3. checkpoint-6100/README.md +488 -0
  4. checkpoint-6100/config.json +28 -0
  5. checkpoint-6100/config_sentence_transformers.json +10 -0
  6. checkpoint-6100/model.safetensors +3 -0
  7. checkpoint-6100/modules.json +14 -0
  8. checkpoint-6100/optimizer.pt +3 -0
  9. checkpoint-6100/rng_state.pth +3 -0
  10. checkpoint-6100/scheduler.pt +3 -0
  11. checkpoint-6100/sentence_bert_config.json +4 -0
  12. checkpoint-6100/sentencepiece.bpe.model +3 -0
  13. checkpoint-6100/special_tokens_map.json +15 -0
  14. checkpoint-6100/tokenizer.json +3 -0
  15. checkpoint-6100/tokenizer_config.json +54 -0
  16. checkpoint-6100/trainer_state.json +1253 -0
  17. checkpoint-6100/training_args.bin +3 -0
  18. checkpoint-6200/1_Pooling/config.json +10 -0
  19. checkpoint-6200/README.md +489 -0
  20. checkpoint-6200/config.json +28 -0
  21. checkpoint-6200/config_sentence_transformers.json +10 -0
  22. checkpoint-6200/model.safetensors +3 -0
  23. checkpoint-6200/modules.json +14 -0
  24. checkpoint-6200/optimizer.pt +3 -0
  25. checkpoint-6200/rng_state.pth +3 -0
  26. checkpoint-6200/scheduler.pt +3 -0
  27. checkpoint-6200/sentence_bert_config.json +4 -0
  28. checkpoint-6200/sentencepiece.bpe.model +3 -0
  29. checkpoint-6200/special_tokens_map.json +15 -0
  30. checkpoint-6200/tokenizer.json +3 -0
  31. checkpoint-6200/tokenizer_config.json +54 -0
  32. checkpoint-6200/trainer_state.json +1273 -0
  33. checkpoint-6200/training_args.bin +3 -0
  34. final/1_Pooling/config.json +10 -0
  35. final/README.md +524 -0
  36. final/config.json +28 -0
  37. final/config_sentence_transformers.json +10 -0
  38. final/model.safetensors +3 -0
  39. final/modules.json +14 -0
  40. final/sentence_bert_config.json +4 -0
  41. final/sentencepiece.bpe.model +3 -0
  42. final/special_tokens_map.json +15 -0
  43. final/tokenizer.json +3 -0
  44. final/tokenizer_config.json +54 -0
  45. runs/Jun03_16-50-47_ruche-gpu14.cluster/events.out.tfevents.1717426290.ruche-gpu14.cluster.7739.0 +3 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-6100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-6200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ final/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-6100/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-6100/README.md ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:100K<n<1M
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: FacebookAI/xlm-roberta-base
12
+ metrics:
13
+ - cosine_accuracy
14
+ - dot_accuracy
15
+ - manhattan_accuracy
16
+ - euclidean_accuracy
17
+ - max_accuracy
18
+ widget:
19
+ - source_sentence: a baby smiling
20
+ sentences:
21
+ - The boy is smiling
22
+ - He is playing a song.
23
+ - A man is sleeping.
24
+ - source_sentence: an eagle flies
25
+ sentences:
26
+ - The person is amused.
27
+ - There is a land race.
28
+ - A man is sleeping.
29
+ - source_sentence: There's a dock
30
+ sentences:
31
+ - The animal is outdoors.
32
+ - The biker is a human.
33
+ - A man is sleeping.
34
+ - source_sentence: A woman sings.
35
+ sentences:
36
+ - The woman is singing.
37
+ - Girls dance together.
38
+ - A man playing ice hockey.
39
+ - source_sentence: The boy scowls
40
+ sentences:
41
+ - The boy is outside.
42
+ - The person is inside.
43
+ - two men stand alone
44
+ pipeline_tag: sentence-similarity
45
+ model-index:
46
+ - name: SentenceTransformer based on FacebookAI/xlm-roberta-base
47
+ results:
48
+ - task:
49
+ type: triplet
50
+ name: Triplet
51
+ dataset:
52
+ name: all nli dev
53
+ type: all-nli-dev
54
+ metrics:
55
+ - type: cosine_accuracy
56
+ value: 0.935
57
+ name: Cosine Accuracy
58
+ - type: dot_accuracy
59
+ value: 0.061
60
+ name: Dot Accuracy
61
+ - type: manhattan_accuracy
62
+ value: 0.929
63
+ name: Manhattan Accuracy
64
+ - type: euclidean_accuracy
65
+ value: 0.93
66
+ name: Euclidean Accuracy
67
+ - type: max_accuracy
68
+ value: 0.935
69
+ name: Max Accuracy
70
+ ---
71
+
72
+ # SentenceTransformer based on FacebookAI/xlm-roberta-base
73
+
74
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
75
+
76
+ ## Model Details
77
+
78
+ ### Model Description
79
+ - **Model Type:** Sentence Transformer
80
+ - **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
81
+ - **Maximum Sequence Length:** 512 tokens
82
+ - **Output Dimensionality:** 768 tokens
83
+ - **Similarity Function:** Cosine Similarity
84
+ - **Training Dataset:**
85
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
86
+ - **Language:** en
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
100
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("sentence_transformers_model_id")
120
+ # Run inference
121
+ sentences = [
122
+ 'The boy scowls',
123
+ 'The boy is outside.',
124
+ 'The person is inside.',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 768]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Triplet
165
+ * Dataset: `all-nli-dev`
166
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
167
+
168
+ | Metric | Value |
169
+ |:-------------------|:----------|
170
+ | cosine_accuracy | 0.935 |
171
+ | dot_accuracy | 0.061 |
172
+ | manhattan_accuracy | 0.929 |
173
+ | euclidean_accuracy | 0.93 |
174
+ | **max_accuracy** | **0.935** |
175
+
176
+ <!--
177
+ ## Bias, Risks and Limitations
178
+
179
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
180
+ -->
181
+
182
+ <!--
183
+ ### Recommendations
184
+
185
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
186
+ -->
187
+
188
+ ## Training Details
189
+
190
+ ### Training Dataset
191
+
192
+ #### sentence-transformers/all-nli
193
+
194
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
195
+ * Size: 100,000 training samples
196
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | anchor | positive | negative |
199
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
200
+ | type | string | string | string |
201
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
202
+ * Samples:
203
+ | anchor | positive | negative |
204
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
205
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
206
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
207
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
208
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
209
+ ```json
210
+ {
211
+ "scale": 20.0,
212
+ "similarity_fct": "cos_sim"
213
+ }
214
+ ```
215
+
216
+ ### Evaluation Dataset
217
+
218
+ #### sentence-transformers/all-nli
219
+
220
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
221
+ * Size: 1,000 evaluation samples
222
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | anchor | positive | negative |
225
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
226
+ | type | string | string | string |
227
+ | details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
228
+ * Samples:
229
+ | anchor | positive | negative |
230
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
231
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
232
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
233
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
234
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
235
+ ```json
236
+ {
237
+ "scale": 20.0,
238
+ "similarity_fct": "cos_sim"
239
+ }
240
+ ```
241
+
242
+ ### Training Hyperparameters
243
+ #### Non-Default Hyperparameters
244
+
245
+ - `eval_strategy`: steps
246
+ - `per_device_train_batch_size`: 16
247
+ - `per_device_eval_batch_size`: 16
248
+ - `num_train_epochs`: 1
249
+ - `warmup_ratio`: 0.1
250
+ - `fp16`: True
251
+ - `batch_sampler`: no_duplicates
252
+
253
+ #### All Hyperparameters
254
+ <details><summary>Click to expand</summary>
255
+
256
+ - `overwrite_output_dir`: False
257
+ - `do_predict`: False
258
+ - `eval_strategy`: steps
259
+ - `prediction_loss_only`: True
260
+ - `per_device_train_batch_size`: 16
261
+ - `per_device_eval_batch_size`: 16
262
+ - `per_gpu_train_batch_size`: None
263
+ - `per_gpu_eval_batch_size`: None
264
+ - `gradient_accumulation_steps`: 1
265
+ - `eval_accumulation_steps`: None
266
+ - `learning_rate`: 5e-05
267
+ - `weight_decay`: 0.0
268
+ - `adam_beta1`: 0.9
269
+ - `adam_beta2`: 0.999
270
+ - `adam_epsilon`: 1e-08
271
+ - `max_grad_norm`: 1.0
272
+ - `num_train_epochs`: 1
273
+ - `max_steps`: -1
274
+ - `lr_scheduler_type`: linear
275
+ - `lr_scheduler_kwargs`: {}
276
+ - `warmup_ratio`: 0.1
277
+ - `warmup_steps`: 0
278
+ - `log_level`: passive
279
+ - `log_level_replica`: warning
280
+ - `log_on_each_node`: True
281
+ - `logging_nan_inf_filter`: True
282
+ - `save_safetensors`: True
283
+ - `save_on_each_node`: False
284
+ - `save_only_model`: False
285
+ - `restore_callback_states_from_checkpoint`: False
286
+ - `no_cuda`: False
287
+ - `use_cpu`: False
288
+ - `use_mps_device`: False
289
+ - `seed`: 42
290
+ - `data_seed`: None
291
+ - `jit_mode_eval`: False
292
+ - `use_ipex`: False
293
+ - `bf16`: False
294
+ - `fp16`: True
295
+ - `fp16_opt_level`: O1
296
+ - `half_precision_backend`: auto
297
+ - `bf16_full_eval`: False
298
+ - `fp16_full_eval`: False
299
+ - `tf32`: None
300
+ - `local_rank`: 0
301
+ - `ddp_backend`: None
302
+ - `tpu_num_cores`: None
303
+ - `tpu_metrics_debug`: False
304
+ - `debug`: []
305
+ - `dataloader_drop_last`: False
306
+ - `dataloader_num_workers`: 0
307
+ - `dataloader_prefetch_factor`: None
308
+ - `past_index`: -1
309
+ - `disable_tqdm`: False
310
+ - `remove_unused_columns`: True
311
+ - `label_names`: None
312
+ - `load_best_model_at_end`: False
313
+ - `ignore_data_skip`: False
314
+ - `fsdp`: []
315
+ - `fsdp_min_num_params`: 0
316
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
317
+ - `fsdp_transformer_layer_cls_to_wrap`: None
318
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
319
+ - `deepspeed`: None
320
+ - `label_smoothing_factor`: 0.0
321
+ - `optim`: adamw_torch
322
+ - `optim_args`: None
323
+ - `adafactor`: False
324
+ - `group_by_length`: False
325
+ - `length_column_name`: length
326
+ - `ddp_find_unused_parameters`: None
327
+ - `ddp_bucket_cap_mb`: None
328
+ - `ddp_broadcast_buffers`: False
329
+ - `dataloader_pin_memory`: True
330
+ - `dataloader_persistent_workers`: False
331
+ - `skip_memory_metrics`: True
332
+ - `use_legacy_prediction_loop`: False
333
+ - `push_to_hub`: False
334
+ - `resume_from_checkpoint`: None
335
+ - `hub_model_id`: None
336
+ - `hub_strategy`: every_save
337
+ - `hub_private_repo`: False
338
+ - `hub_always_push`: False
339
+ - `gradient_checkpointing`: False
340
+ - `gradient_checkpointing_kwargs`: None
341
+ - `include_inputs_for_metrics`: False
342
+ - `eval_do_concat_batches`: True
343
+ - `fp16_backend`: auto
344
+ - `push_to_hub_model_id`: None
345
+ - `push_to_hub_organization`: None
346
+ - `mp_parameters`:
347
+ - `auto_find_batch_size`: False
348
+ - `full_determinism`: False
349
+ - `torchdynamo`: None
350
+ - `ray_scope`: last
351
+ - `ddp_timeout`: 1800
352
+ - `torch_compile`: False
353
+ - `torch_compile_backend`: None
354
+ - `torch_compile_mode`: None
355
+ - `dispatch_batches`: None
356
+ - `split_batches`: None
357
+ - `include_tokens_per_second`: False
358
+ - `include_num_input_tokens_seen`: False
359
+ - `neftune_noise_alpha`: None
360
+ - `optim_target_modules`: None
361
+ - `batch_eval_metrics`: False
362
+ - `batch_sampler`: no_duplicates
363
+ - `multi_dataset_batch_sampler`: proportional
364
+
365
+ </details>
366
+
367
+ ### Training Logs
368
+ | Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy |
369
+ |:-----:|:----:|:-------------:|:------:|:------------------------:|
370
+ | 0 | 0 | - | - | 0.587 |
371
+ | 0.016 | 100 | 3.4547 | 2.2853 | 0.801 |
372
+ | 0.032 | 200 | 1.6761 | 1.3493 | 0.856 |
373
+ | 0.048 | 300 | 1.5528 | 1.4181 | 0.83 |
374
+ | 0.064 | 400 | 1.0069 | 1.3277 | 0.835 |
375
+ | 0.08 | 500 | 1.0611 | 1.4610 | 0.847 |
376
+ | 0.096 | 600 | 1.1424 | 1.7394 | 0.805 |
377
+ | 0.112 | 700 | 1.3545 | 1.4179 | 0.83 |
378
+ | 0.128 | 800 | 1.3587 | 1.6350 | 0.84 |
379
+ | 0.144 | 900 | 1.237 | 1.6794 | 0.801 |
380
+ | 0.16 | 1000 | 1.2029 | 1.6733 | 0.811 |
381
+ | 0.176 | 1100 | 1.2748 | 1.6360 | 0.818 |
382
+ | 0.192 | 1200 | 1.1433 | 1.7952 | 0.806 |
383
+ | 0.208 | 1300 | 1.0113 | 1.4315 | 0.817 |
384
+ | 0.224 | 1400 | 0.8216 | 1.6300 | 0.776 |
385
+ | 0.24 | 1500 | 1.3451 | 1.1566 | 0.856 |
386
+ | 0.256 | 1600 | 0.8745 | 1.2075 | 0.838 |
387
+ | 0.272 | 1700 | 0.9945 | 1.3296 | 0.831 |
388
+ | 0.288 | 1800 | 0.9827 | 1.3052 | 0.844 |
389
+ | 0.304 | 1900 | 0.974 | 1.1643 | 0.85 |
390
+ | 0.32 | 2000 | 0.7555 | 1.2738 | 0.869 |
391
+ | 0.336 | 2100 | 0.7176 | 1.3749 | 0.832 |
392
+ | 0.352 | 2200 | 0.834 | 1.0712 | 0.879 |
393
+ | 0.368 | 2300 | 1.0819 | 1.2763 | 0.849 |
394
+ | 0.384 | 2400 | 0.9515 | 1.1384 | 0.848 |
395
+ | 0.4 | 2500 | 0.7828 | 1.0879 | 0.861 |
396
+ | 0.416 | 2600 | 0.7268 | 0.9835 | 0.868 |
397
+ | 0.432 | 2700 | 0.9228 | 1.1840 | 0.851 |
398
+ | 0.448 | 2800 | 1.0017 | 1.1968 | 0.853 |
399
+ | 0.464 | 2900 | 0.9138 | 0.9931 | 0.869 |
400
+ | 0.48 | 3000 | 0.8498 | 0.9926 | 0.876 |
401
+ | 0.496 | 3100 | 0.9682 | 1.0004 | 0.866 |
402
+ | 0.512 | 3200 | 0.7227 | 0.8490 | 0.883 |
403
+ | 0.528 | 3300 | 0.7134 | 0.8215 | 0.884 |
404
+ | 0.544 | 3400 | 0.6645 | 0.8889 | 0.877 |
405
+ | 0.56 | 3500 | 0.7073 | 0.8374 | 0.888 |
406
+ | 0.576 | 3600 | 0.6679 | 0.7780 | 0.911 |
407
+ | 0.592 | 3700 | 0.6609 | 0.8129 | 0.896 |
408
+ | 0.608 | 3800 | 0.687 | 0.7216 | 0.913 |
409
+ | 0.624 | 3900 | 0.5725 | 0.7618 | 0.92 |
410
+ | 0.64 | 4000 | 0.87 | 0.7070 | 0.909 |
411
+ | 0.656 | 4100 | 1.0892 | 0.7424 | 0.901 |
412
+ | 0.672 | 4200 | 1.048 | 0.6750 | 0.909 |
413
+ | 0.688 | 4300 | 0.8571 | 0.6474 | 0.903 |
414
+ | 0.704 | 4400 | 0.7945 | 0.6095 | 0.911 |
415
+ | 0.72 | 4500 | 0.6717 | 0.5664 | 0.93 |
416
+ | 0.736 | 4600 | 0.8161 | 0.5479 | 0.919 |
417
+ | 0.752 | 4700 | 0.7917 | 0.6420 | 0.911 |
418
+ | 0.768 | 4800 | 0.7711 | 0.5856 | 0.916 |
419
+ | 0.784 | 4900 | 0.6441 | 0.5775 | 0.916 |
420
+ | 0.8 | 5000 | 0.7766 | 0.5785 | 0.922 |
421
+ | 0.816 | 5100 | 0.6009 | 0.5680 | 0.921 |
422
+ | 0.832 | 5200 | 0.6711 | 0.5487 | 0.921 |
423
+ | 0.848 | 5300 | 0.618 | 0.5450 | 0.926 |
424
+ | 0.864 | 5400 | 0.6702 | 0.5498 | 0.926 |
425
+ | 0.88 | 5500 | 0.7039 | 0.5192 | 0.927 |
426
+ | 0.896 | 5600 | 0.6114 | 0.5045 | 0.932 |
427
+ | 0.912 | 5700 | 0.7761 | 0.5033 | 0.934 |
428
+ | 0.928 | 5800 | 0.6248 | 0.5013 | 0.932 |
429
+ | 0.944 | 5900 | 0.8359 | 0.4976 | 0.93 |
430
+ | 0.96 | 6000 | 0.8764 | 0.4976 | 0.936 |
431
+ | 0.976 | 6100 | 0.763 | 0.4845 | 0.935 |
432
+
433
+
434
+ ### Framework Versions
435
+ - Python: 3.9.10
436
+ - Sentence Transformers: 3.0.0
437
+ - Transformers: 4.41.2
438
+ - PyTorch: 2.3.0+cu121
439
+ - Accelerate: 0.26.1
440
+ - Datasets: 2.16.1
441
+ - Tokenizers: 0.19.1
442
+
443
+ ## Citation
444
+
445
+ ### BibTeX
446
+
447
+ #### Sentence Transformers
448
+ ```bibtex
449
+ @inproceedings{reimers-2019-sentence-bert,
450
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
451
+ author = "Reimers, Nils and Gurevych, Iryna",
452
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
453
+ month = "11",
454
+ year = "2019",
455
+ publisher = "Association for Computational Linguistics",
456
+ url = "https://arxiv.org/abs/1908.10084",
457
+ }
458
+ ```
459
+
460
+ #### MultipleNegativesRankingLoss
461
+ ```bibtex
462
+ @misc{henderson2017efficient,
463
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
464
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
465
+ year={2017},
466
+ eprint={1705.00652},
467
+ archivePrefix={arXiv},
468
+ primaryClass={cs.CL}
469
+ }
470
+ ```
471
+
472
+ <!--
473
+ ## Glossary
474
+
475
+ *Clearly define terms in order to be accessible across audiences.*
476
+ -->
477
+
478
+ <!--
479
+ ## Model Card Authors
480
+
481
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
482
+ -->
483
+
484
+ <!--
485
+ ## Model Card Contact
486
+
487
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
488
+ -->
checkpoint-6100/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "FacebookAI/xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoint-6100/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-6100/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df47a3eb029574154d086abae48feb4d1d757dbfecc34f893c82d173c0bd96b
3
+ size 1112197096
checkpoint-6100/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-6100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6d7287cf8fbc30c2b30ef85849498613e3d75ded630fe7e09171a2f1b45e815
3
+ size 2219789306
checkpoint-6100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23a25b363c5fd4b79a16d184839afe2c07deeb0118382413f68b6c68f69f39ab
3
+ size 14244
checkpoint-6100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06f843d945721c7a0fb1269619e679250a0fa0bc91699c6353d8e5e224f65b7c
3
+ size 1064
checkpoint-6100/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-6100/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
checkpoint-6100/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
checkpoint-6100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
checkpoint-6100/tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
checkpoint-6100/trainer_state.json ADDED
@@ -0,0 +1,1253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.976,
5
+ "eval_steps": 100,
6
+ "global_step": 6100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016,
13
+ "grad_norm": 203.1111602783203,
14
+ "learning_rate": 7.520000000000001e-06,
15
+ "loss": 3.4547,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.016,
20
+ "eval_all-nli-dev_cosine_accuracy": 0.737,
21
+ "eval_all-nli-dev_dot_accuracy": 0.319,
22
+ "eval_all-nli-dev_euclidean_accuracy": 0.737,
23
+ "eval_all-nli-dev_manhattan_accuracy": 0.801,
24
+ "eval_all-nli-dev_max_accuracy": 0.801,
25
+ "eval_loss": 2.2853124141693115,
26
+ "eval_runtime": 4.7392,
27
+ "eval_samples_per_second": 211.008,
28
+ "eval_steps_per_second": 13.294,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.032,
33
+ "grad_norm": 38.57483673095703,
34
+ "learning_rate": 1.552e-05,
35
+ "loss": 1.6761,
36
+ "step": 200
37
+ },
38
+ {
39
+ "epoch": 0.032,
40
+ "eval_all-nli-dev_cosine_accuracy": 0.826,
41
+ "eval_all-nli-dev_dot_accuracy": 0.267,
42
+ "eval_all-nli-dev_euclidean_accuracy": 0.83,
43
+ "eval_all-nli-dev_manhattan_accuracy": 0.856,
44
+ "eval_all-nli-dev_max_accuracy": 0.856,
45
+ "eval_loss": 1.3493391275405884,
46
+ "eval_runtime": 4.734,
47
+ "eval_samples_per_second": 211.236,
48
+ "eval_steps_per_second": 13.308,
49
+ "step": 200
50
+ },
51
+ {
52
+ "epoch": 0.048,
53
+ "grad_norm": 36.92991638183594,
54
+ "learning_rate": 2.3520000000000002e-05,
55
+ "loss": 1.5528,
56
+ "step": 300
57
+ },
58
+ {
59
+ "epoch": 0.048,
60
+ "eval_all-nli-dev_cosine_accuracy": 0.805,
61
+ "eval_all-nli-dev_dot_accuracy": 0.29,
62
+ "eval_all-nli-dev_euclidean_accuracy": 0.818,
63
+ "eval_all-nli-dev_manhattan_accuracy": 0.83,
64
+ "eval_all-nli-dev_max_accuracy": 0.83,
65
+ "eval_loss": 1.4180811643600464,
66
+ "eval_runtime": 4.629,
67
+ "eval_samples_per_second": 216.028,
68
+ "eval_steps_per_second": 13.61,
69
+ "step": 300
70
+ },
71
+ {
72
+ "epoch": 0.064,
73
+ "grad_norm": 35.267967224121094,
74
+ "learning_rate": 3.1519999999999996e-05,
75
+ "loss": 1.0069,
76
+ "step": 400
77
+ },
78
+ {
79
+ "epoch": 0.064,
80
+ "eval_all-nli-dev_cosine_accuracy": 0.819,
81
+ "eval_all-nli-dev_dot_accuracy": 0.244,
82
+ "eval_all-nli-dev_euclidean_accuracy": 0.824,
83
+ "eval_all-nli-dev_manhattan_accuracy": 0.835,
84
+ "eval_all-nli-dev_max_accuracy": 0.835,
85
+ "eval_loss": 1.3276922702789307,
86
+ "eval_runtime": 4.5852,
87
+ "eval_samples_per_second": 218.095,
88
+ "eval_steps_per_second": 13.74,
89
+ "step": 400
90
+ },
91
+ {
92
+ "epoch": 0.08,
93
+ "grad_norm": 25.50597381591797,
94
+ "learning_rate": 3.944e-05,
95
+ "loss": 1.0611,
96
+ "step": 500
97
+ },
98
+ {
99
+ "epoch": 0.08,
100
+ "eval_all-nli-dev_cosine_accuracy": 0.814,
101
+ "eval_all-nli-dev_dot_accuracy": 0.216,
102
+ "eval_all-nli-dev_euclidean_accuracy": 0.804,
103
+ "eval_all-nli-dev_manhattan_accuracy": 0.847,
104
+ "eval_all-nli-dev_max_accuracy": 0.847,
105
+ "eval_loss": 1.4609754085540771,
106
+ "eval_runtime": 4.6833,
107
+ "eval_samples_per_second": 213.524,
108
+ "eval_steps_per_second": 13.452,
109
+ "step": 500
110
+ },
111
+ {
112
+ "epoch": 0.096,
113
+ "grad_norm": 55.69437026977539,
114
+ "learning_rate": 4.744e-05,
115
+ "loss": 1.1424,
116
+ "step": 600
117
+ },
118
+ {
119
+ "epoch": 0.096,
120
+ "eval_all-nli-dev_cosine_accuracy": 0.776,
121
+ "eval_all-nli-dev_dot_accuracy": 0.319,
122
+ "eval_all-nli-dev_euclidean_accuracy": 0.786,
123
+ "eval_all-nli-dev_manhattan_accuracy": 0.805,
124
+ "eval_all-nli-dev_max_accuracy": 0.805,
125
+ "eval_loss": 1.7394046783447266,
126
+ "eval_runtime": 4.6079,
127
+ "eval_samples_per_second": 217.017,
128
+ "eval_steps_per_second": 13.672,
129
+ "step": 600
130
+ },
131
+ {
132
+ "epoch": 0.112,
133
+ "grad_norm": 24.330310821533203,
134
+ "learning_rate": 4.9404444444444447e-05,
135
+ "loss": 1.3545,
136
+ "step": 700
137
+ },
138
+ {
139
+ "epoch": 0.112,
140
+ "eval_all-nli-dev_cosine_accuracy": 0.825,
141
+ "eval_all-nli-dev_dot_accuracy": 0.211,
142
+ "eval_all-nli-dev_euclidean_accuracy": 0.825,
143
+ "eval_all-nli-dev_manhattan_accuracy": 0.83,
144
+ "eval_all-nli-dev_max_accuracy": 0.83,
145
+ "eval_loss": 1.417900562286377,
146
+ "eval_runtime": 4.6918,
147
+ "eval_samples_per_second": 213.136,
148
+ "eval_steps_per_second": 13.428,
149
+ "step": 700
150
+ },
151
+ {
152
+ "epoch": 0.128,
153
+ "grad_norm": 18.1214599609375,
154
+ "learning_rate": 4.852444444444444e-05,
155
+ "loss": 1.3587,
156
+ "step": 800
157
+ },
158
+ {
159
+ "epoch": 0.128,
160
+ "eval_all-nli-dev_cosine_accuracy": 0.834,
161
+ "eval_all-nli-dev_dot_accuracy": 0.175,
162
+ "eval_all-nli-dev_euclidean_accuracy": 0.832,
163
+ "eval_all-nli-dev_manhattan_accuracy": 0.84,
164
+ "eval_all-nli-dev_max_accuracy": 0.84,
165
+ "eval_loss": 1.6350008249282837,
166
+ "eval_runtime": 4.57,
167
+ "eval_samples_per_second": 218.818,
168
+ "eval_steps_per_second": 13.786,
169
+ "step": 800
170
+ },
171
+ {
172
+ "epoch": 0.144,
173
+ "grad_norm": 28.469261169433594,
174
+ "learning_rate": 4.763555555555555e-05,
175
+ "loss": 1.237,
176
+ "step": 900
177
+ },
178
+ {
179
+ "epoch": 0.144,
180
+ "eval_all-nli-dev_cosine_accuracy": 0.778,
181
+ "eval_all-nli-dev_dot_accuracy": 0.235,
182
+ "eval_all-nli-dev_euclidean_accuracy": 0.778,
183
+ "eval_all-nli-dev_manhattan_accuracy": 0.801,
184
+ "eval_all-nli-dev_max_accuracy": 0.801,
185
+ "eval_loss": 1.6793839931488037,
186
+ "eval_runtime": 4.5941,
187
+ "eval_samples_per_second": 217.673,
188
+ "eval_steps_per_second": 13.713,
189
+ "step": 900
190
+ },
191
+ {
192
+ "epoch": 0.16,
193
+ "grad_norm": 33.614253997802734,
194
+ "learning_rate": 4.6746666666666664e-05,
195
+ "loss": 1.2029,
196
+ "step": 1000
197
+ },
198
+ {
199
+ "epoch": 0.16,
200
+ "eval_all-nli-dev_cosine_accuracy": 0.799,
201
+ "eval_all-nli-dev_dot_accuracy": 0.24,
202
+ "eval_all-nli-dev_euclidean_accuracy": 0.808,
203
+ "eval_all-nli-dev_manhattan_accuracy": 0.811,
204
+ "eval_all-nli-dev_max_accuracy": 0.811,
205
+ "eval_loss": 1.673274040222168,
206
+ "eval_runtime": 4.6683,
207
+ "eval_samples_per_second": 214.212,
208
+ "eval_steps_per_second": 13.495,
209
+ "step": 1000
210
+ },
211
+ {
212
+ "epoch": 0.176,
213
+ "grad_norm": 26.691509246826172,
214
+ "learning_rate": 4.5857777777777775e-05,
215
+ "loss": 1.2748,
216
+ "step": 1100
217
+ },
218
+ {
219
+ "epoch": 0.176,
220
+ "eval_all-nli-dev_cosine_accuracy": 0.8,
221
+ "eval_all-nli-dev_dot_accuracy": 0.213,
222
+ "eval_all-nli-dev_euclidean_accuracy": 0.802,
223
+ "eval_all-nli-dev_manhattan_accuracy": 0.818,
224
+ "eval_all-nli-dev_max_accuracy": 0.818,
225
+ "eval_loss": 1.6359915733337402,
226
+ "eval_runtime": 4.6977,
227
+ "eval_samples_per_second": 212.869,
228
+ "eval_steps_per_second": 13.411,
229
+ "step": 1100
230
+ },
231
+ {
232
+ "epoch": 0.192,
233
+ "grad_norm": 23.69953727722168,
234
+ "learning_rate": 4.4968888888888894e-05,
235
+ "loss": 1.1433,
236
+ "step": 1200
237
+ },
238
+ {
239
+ "epoch": 0.192,
240
+ "eval_all-nli-dev_cosine_accuracy": 0.786,
241
+ "eval_all-nli-dev_dot_accuracy": 0.215,
242
+ "eval_all-nli-dev_euclidean_accuracy": 0.785,
243
+ "eval_all-nli-dev_manhattan_accuracy": 0.806,
244
+ "eval_all-nli-dev_max_accuracy": 0.806,
245
+ "eval_loss": 1.7951678037643433,
246
+ "eval_runtime": 4.6338,
247
+ "eval_samples_per_second": 215.807,
248
+ "eval_steps_per_second": 13.596,
249
+ "step": 1200
250
+ },
251
+ {
252
+ "epoch": 0.208,
253
+ "grad_norm": 17.910472869873047,
254
+ "learning_rate": 4.4080000000000005e-05,
255
+ "loss": 1.0113,
256
+ "step": 1300
257
+ },
258
+ {
259
+ "epoch": 0.208,
260
+ "eval_all-nli-dev_cosine_accuracy": 0.817,
261
+ "eval_all-nli-dev_dot_accuracy": 0.178,
262
+ "eval_all-nli-dev_euclidean_accuracy": 0.815,
263
+ "eval_all-nli-dev_manhattan_accuracy": 0.817,
264
+ "eval_all-nli-dev_max_accuracy": 0.817,
265
+ "eval_loss": 1.4315475225448608,
266
+ "eval_runtime": 4.6753,
267
+ "eval_samples_per_second": 213.892,
268
+ "eval_steps_per_second": 13.475,
269
+ "step": 1300
270
+ },
271
+ {
272
+ "epoch": 0.224,
273
+ "grad_norm": 43.645694732666016,
274
+ "learning_rate": 4.3191111111111116e-05,
275
+ "loss": 0.8216,
276
+ "step": 1400
277
+ },
278
+ {
279
+ "epoch": 0.224,
280
+ "eval_all-nli-dev_cosine_accuracy": 0.771,
281
+ "eval_all-nli-dev_dot_accuracy": 0.243,
282
+ "eval_all-nli-dev_euclidean_accuracy": 0.776,
283
+ "eval_all-nli-dev_manhattan_accuracy": 0.774,
284
+ "eval_all-nli-dev_max_accuracy": 0.776,
285
+ "eval_loss": 1.6300010681152344,
286
+ "eval_runtime": 4.6418,
287
+ "eval_samples_per_second": 215.435,
288
+ "eval_steps_per_second": 13.572,
289
+ "step": 1400
290
+ },
291
+ {
292
+ "epoch": 0.24,
293
+ "grad_norm": 31.21487045288086,
294
+ "learning_rate": 4.231111111111111e-05,
295
+ "loss": 1.3451,
296
+ "step": 1500
297
+ },
298
+ {
299
+ "epoch": 0.24,
300
+ "eval_all-nli-dev_cosine_accuracy": 0.845,
301
+ "eval_all-nli-dev_dot_accuracy": 0.186,
302
+ "eval_all-nli-dev_euclidean_accuracy": 0.85,
303
+ "eval_all-nli-dev_manhattan_accuracy": 0.856,
304
+ "eval_all-nli-dev_max_accuracy": 0.856,
305
+ "eval_loss": 1.1566354036331177,
306
+ "eval_runtime": 4.6716,
307
+ "eval_samples_per_second": 214.061,
308
+ "eval_steps_per_second": 13.486,
309
+ "step": 1500
310
+ },
311
+ {
312
+ "epoch": 0.256,
313
+ "grad_norm": 25.364757537841797,
314
+ "learning_rate": 4.142222222222222e-05,
315
+ "loss": 0.8745,
316
+ "step": 1600
317
+ },
318
+ {
319
+ "epoch": 0.256,
320
+ "eval_all-nli-dev_cosine_accuracy": 0.825,
321
+ "eval_all-nli-dev_dot_accuracy": 0.175,
322
+ "eval_all-nli-dev_euclidean_accuracy": 0.833,
323
+ "eval_all-nli-dev_manhattan_accuracy": 0.838,
324
+ "eval_all-nli-dev_max_accuracy": 0.838,
325
+ "eval_loss": 1.2074507474899292,
326
+ "eval_runtime": 4.7951,
327
+ "eval_samples_per_second": 208.546,
328
+ "eval_steps_per_second": 13.138,
329
+ "step": 1600
330
+ },
331
+ {
332
+ "epoch": 0.272,
333
+ "grad_norm": 16.138595581054688,
334
+ "learning_rate": 4.0533333333333334e-05,
335
+ "loss": 0.9945,
336
+ "step": 1700
337
+ },
338
+ {
339
+ "epoch": 0.272,
340
+ "eval_all-nli-dev_cosine_accuracy": 0.822,
341
+ "eval_all-nli-dev_dot_accuracy": 0.191,
342
+ "eval_all-nli-dev_euclidean_accuracy": 0.824,
343
+ "eval_all-nli-dev_manhattan_accuracy": 0.831,
344
+ "eval_all-nli-dev_max_accuracy": 0.831,
345
+ "eval_loss": 1.3295574188232422,
346
+ "eval_runtime": 4.7422,
347
+ "eval_samples_per_second": 210.873,
348
+ "eval_steps_per_second": 13.285,
349
+ "step": 1700
350
+ },
351
+ {
352
+ "epoch": 0.288,
353
+ "grad_norm": 21.44277572631836,
354
+ "learning_rate": 3.9644444444444445e-05,
355
+ "loss": 0.9827,
356
+ "step": 1800
357
+ },
358
+ {
359
+ "epoch": 0.288,
360
+ "eval_all-nli-dev_cosine_accuracy": 0.844,
361
+ "eval_all-nli-dev_dot_accuracy": 0.163,
362
+ "eval_all-nli-dev_euclidean_accuracy": 0.839,
363
+ "eval_all-nli-dev_manhattan_accuracy": 0.844,
364
+ "eval_all-nli-dev_max_accuracy": 0.844,
365
+ "eval_loss": 1.3051831722259521,
366
+ "eval_runtime": 4.6529,
367
+ "eval_samples_per_second": 214.919,
368
+ "eval_steps_per_second": 13.54,
369
+ "step": 1800
370
+ },
371
+ {
372
+ "epoch": 0.304,
373
+ "grad_norm": 25.058795928955078,
374
+ "learning_rate": 3.8755555555555556e-05,
375
+ "loss": 0.974,
376
+ "step": 1900
377
+ },
378
+ {
379
+ "epoch": 0.304,
380
+ "eval_all-nli-dev_cosine_accuracy": 0.837,
381
+ "eval_all-nli-dev_dot_accuracy": 0.161,
382
+ "eval_all-nli-dev_euclidean_accuracy": 0.838,
383
+ "eval_all-nli-dev_manhattan_accuracy": 0.85,
384
+ "eval_all-nli-dev_max_accuracy": 0.85,
385
+ "eval_loss": 1.164267897605896,
386
+ "eval_runtime": 4.6376,
387
+ "eval_samples_per_second": 215.626,
388
+ "eval_steps_per_second": 13.584,
389
+ "step": 1900
390
+ },
391
+ {
392
+ "epoch": 0.32,
393
+ "grad_norm": 17.524301528930664,
394
+ "learning_rate": 3.786666666666667e-05,
395
+ "loss": 0.7555,
396
+ "step": 2000
397
+ },
398
+ {
399
+ "epoch": 0.32,
400
+ "eval_all-nli-dev_cosine_accuracy": 0.855,
401
+ "eval_all-nli-dev_dot_accuracy": 0.147,
402
+ "eval_all-nli-dev_euclidean_accuracy": 0.856,
403
+ "eval_all-nli-dev_manhattan_accuracy": 0.869,
404
+ "eval_all-nli-dev_max_accuracy": 0.869,
405
+ "eval_loss": 1.2737869024276733,
406
+ "eval_runtime": 4.6503,
407
+ "eval_samples_per_second": 215.038,
408
+ "eval_steps_per_second": 13.547,
409
+ "step": 2000
410
+ },
411
+ {
412
+ "epoch": 0.336,
413
+ "grad_norm": 10.828136444091797,
414
+ "learning_rate": 3.697777777777778e-05,
415
+ "loss": 0.7176,
416
+ "step": 2100
417
+ },
418
+ {
419
+ "epoch": 0.336,
420
+ "eval_all-nli-dev_cosine_accuracy": 0.832,
421
+ "eval_all-nli-dev_dot_accuracy": 0.183,
422
+ "eval_all-nli-dev_euclidean_accuracy": 0.832,
423
+ "eval_all-nli-dev_manhattan_accuracy": 0.829,
424
+ "eval_all-nli-dev_max_accuracy": 0.832,
425
+ "eval_loss": 1.374898910522461,
426
+ "eval_runtime": 4.6209,
427
+ "eval_samples_per_second": 216.408,
428
+ "eval_steps_per_second": 13.634,
429
+ "step": 2100
430
+ },
431
+ {
432
+ "epoch": 0.352,
433
+ "grad_norm": 11.03420639038086,
434
+ "learning_rate": 3.608888888888889e-05,
435
+ "loss": 0.834,
436
+ "step": 2200
437
+ },
438
+ {
439
+ "epoch": 0.352,
440
+ "eval_all-nli-dev_cosine_accuracy": 0.875,
441
+ "eval_all-nli-dev_dot_accuracy": 0.147,
442
+ "eval_all-nli-dev_euclidean_accuracy": 0.879,
443
+ "eval_all-nli-dev_manhattan_accuracy": 0.874,
444
+ "eval_all-nli-dev_max_accuracy": 0.879,
445
+ "eval_loss": 1.071208119392395,
446
+ "eval_runtime": 4.6829,
447
+ "eval_samples_per_second": 213.542,
448
+ "eval_steps_per_second": 13.453,
449
+ "step": 2200
450
+ },
451
+ {
452
+ "epoch": 0.368,
453
+ "grad_norm": 15.635822296142578,
454
+ "learning_rate": 3.52e-05,
455
+ "loss": 1.0819,
456
+ "step": 2300
457
+ },
458
+ {
459
+ "epoch": 0.368,
460
+ "eval_all-nli-dev_cosine_accuracy": 0.849,
461
+ "eval_all-nli-dev_dot_accuracy": 0.162,
462
+ "eval_all-nli-dev_euclidean_accuracy": 0.849,
463
+ "eval_all-nli-dev_manhattan_accuracy": 0.848,
464
+ "eval_all-nli-dev_max_accuracy": 0.849,
465
+ "eval_loss": 1.27626633644104,
466
+ "eval_runtime": 4.5515,
467
+ "eval_samples_per_second": 219.707,
468
+ "eval_steps_per_second": 13.842,
469
+ "step": 2300
470
+ },
471
+ {
472
+ "epoch": 0.384,
473
+ "grad_norm": 15.611441612243652,
474
+ "learning_rate": 3.431111111111111e-05,
475
+ "loss": 0.9515,
476
+ "step": 2400
477
+ },
478
+ {
479
+ "epoch": 0.384,
480
+ "eval_all-nli-dev_cosine_accuracy": 0.845,
481
+ "eval_all-nli-dev_dot_accuracy": 0.153,
482
+ "eval_all-nli-dev_euclidean_accuracy": 0.847,
483
+ "eval_all-nli-dev_manhattan_accuracy": 0.848,
484
+ "eval_all-nli-dev_max_accuracy": 0.848,
485
+ "eval_loss": 1.1383966207504272,
486
+ "eval_runtime": 4.5335,
487
+ "eval_samples_per_second": 220.582,
488
+ "eval_steps_per_second": 13.897,
489
+ "step": 2400
490
+ },
491
+ {
492
+ "epoch": 0.4,
493
+ "grad_norm": 23.901636123657227,
494
+ "learning_rate": 3.3422222222222224e-05,
495
+ "loss": 0.7828,
496
+ "step": 2500
497
+ },
498
+ {
499
+ "epoch": 0.4,
500
+ "eval_all-nli-dev_cosine_accuracy": 0.859,
501
+ "eval_all-nli-dev_dot_accuracy": 0.142,
502
+ "eval_all-nli-dev_euclidean_accuracy": 0.861,
503
+ "eval_all-nli-dev_manhattan_accuracy": 0.861,
504
+ "eval_all-nli-dev_max_accuracy": 0.861,
505
+ "eval_loss": 1.0878574848175049,
506
+ "eval_runtime": 4.6563,
507
+ "eval_samples_per_second": 214.765,
508
+ "eval_steps_per_second": 13.53,
509
+ "step": 2500
510
+ },
511
+ {
512
+ "epoch": 0.416,
513
+ "grad_norm": 20.29927635192871,
514
+ "learning_rate": 3.253333333333333e-05,
515
+ "loss": 0.7268,
516
+ "step": 2600
517
+ },
518
+ {
519
+ "epoch": 0.416,
520
+ "eval_all-nli-dev_cosine_accuracy": 0.868,
521
+ "eval_all-nli-dev_dot_accuracy": 0.128,
522
+ "eval_all-nli-dev_euclidean_accuracy": 0.864,
523
+ "eval_all-nli-dev_manhattan_accuracy": 0.867,
524
+ "eval_all-nli-dev_max_accuracy": 0.868,
525
+ "eval_loss": 0.9835022687911987,
526
+ "eval_runtime": 4.6005,
527
+ "eval_samples_per_second": 217.367,
528
+ "eval_steps_per_second": 13.694,
529
+ "step": 2600
530
+ },
531
+ {
532
+ "epoch": 0.432,
533
+ "grad_norm": 39.60092544555664,
534
+ "learning_rate": 3.164444444444444e-05,
535
+ "loss": 0.9228,
536
+ "step": 2700
537
+ },
538
+ {
539
+ "epoch": 0.432,
540
+ "eval_all-nli-dev_cosine_accuracy": 0.851,
541
+ "eval_all-nli-dev_dot_accuracy": 0.15,
542
+ "eval_all-nli-dev_euclidean_accuracy": 0.848,
543
+ "eval_all-nli-dev_manhattan_accuracy": 0.848,
544
+ "eval_all-nli-dev_max_accuracy": 0.851,
545
+ "eval_loss": 1.1840057373046875,
546
+ "eval_runtime": 4.6302,
547
+ "eval_samples_per_second": 215.972,
548
+ "eval_steps_per_second": 13.606,
549
+ "step": 2700
550
+ },
551
+ {
552
+ "epoch": 0.448,
553
+ "grad_norm": 26.71760368347168,
554
+ "learning_rate": 3.075555555555556e-05,
555
+ "loss": 1.0017,
556
+ "step": 2800
557
+ },
558
+ {
559
+ "epoch": 0.448,
560
+ "eval_all-nli-dev_cosine_accuracy": 0.85,
561
+ "eval_all-nli-dev_dot_accuracy": 0.138,
562
+ "eval_all-nli-dev_euclidean_accuracy": 0.846,
563
+ "eval_all-nli-dev_manhattan_accuracy": 0.853,
564
+ "eval_all-nli-dev_max_accuracy": 0.853,
565
+ "eval_loss": 1.1967850923538208,
566
+ "eval_runtime": 4.6908,
567
+ "eval_samples_per_second": 213.184,
568
+ "eval_steps_per_second": 13.431,
569
+ "step": 2800
570
+ },
571
+ {
572
+ "epoch": 0.464,
573
+ "grad_norm": 25.688671112060547,
574
+ "learning_rate": 2.986666666666667e-05,
575
+ "loss": 0.9138,
576
+ "step": 2900
577
+ },
578
+ {
579
+ "epoch": 0.464,
580
+ "eval_all-nli-dev_cosine_accuracy": 0.861,
581
+ "eval_all-nli-dev_dot_accuracy": 0.14,
582
+ "eval_all-nli-dev_euclidean_accuracy": 0.86,
583
+ "eval_all-nli-dev_manhattan_accuracy": 0.869,
584
+ "eval_all-nli-dev_max_accuracy": 0.869,
585
+ "eval_loss": 0.9930791854858398,
586
+ "eval_runtime": 4.7105,
587
+ "eval_samples_per_second": 212.29,
588
+ "eval_steps_per_second": 13.374,
589
+ "step": 2900
590
+ },
591
+ {
592
+ "epoch": 0.48,
593
+ "grad_norm": 13.824788093566895,
594
+ "learning_rate": 2.897777777777778e-05,
595
+ "loss": 0.8498,
596
+ "step": 3000
597
+ },
598
+ {
599
+ "epoch": 0.48,
600
+ "eval_all-nli-dev_cosine_accuracy": 0.872,
601
+ "eval_all-nli-dev_dot_accuracy": 0.129,
602
+ "eval_all-nli-dev_euclidean_accuracy": 0.871,
603
+ "eval_all-nli-dev_manhattan_accuracy": 0.876,
604
+ "eval_all-nli-dev_max_accuracy": 0.876,
605
+ "eval_loss": 0.9925669431686401,
606
+ "eval_runtime": 4.67,
607
+ "eval_samples_per_second": 214.134,
608
+ "eval_steps_per_second": 13.49,
609
+ "step": 3000
610
+ },
611
+ {
612
+ "epoch": 0.496,
613
+ "grad_norm": 24.699886322021484,
614
+ "learning_rate": 2.8088888888888893e-05,
615
+ "loss": 0.9682,
616
+ "step": 3100
617
+ },
618
+ {
619
+ "epoch": 0.496,
620
+ "eval_all-nli-dev_cosine_accuracy": 0.863,
621
+ "eval_all-nli-dev_dot_accuracy": 0.132,
622
+ "eval_all-nli-dev_euclidean_accuracy": 0.86,
623
+ "eval_all-nli-dev_manhattan_accuracy": 0.866,
624
+ "eval_all-nli-dev_max_accuracy": 0.866,
625
+ "eval_loss": 1.0003857612609863,
626
+ "eval_runtime": 4.6701,
627
+ "eval_samples_per_second": 214.128,
628
+ "eval_steps_per_second": 13.49,
629
+ "step": 3100
630
+ },
631
+ {
632
+ "epoch": 0.512,
633
+ "grad_norm": 33.25304412841797,
634
+ "learning_rate": 2.7200000000000004e-05,
635
+ "loss": 0.7227,
636
+ "step": 3200
637
+ },
638
+ {
639
+ "epoch": 0.512,
640
+ "eval_all-nli-dev_cosine_accuracy": 0.882,
641
+ "eval_all-nli-dev_dot_accuracy": 0.118,
642
+ "eval_all-nli-dev_euclidean_accuracy": 0.883,
643
+ "eval_all-nli-dev_manhattan_accuracy": 0.88,
644
+ "eval_all-nli-dev_max_accuracy": 0.883,
645
+ "eval_loss": 0.8489543199539185,
646
+ "eval_runtime": 4.5888,
647
+ "eval_samples_per_second": 217.92,
648
+ "eval_steps_per_second": 13.729,
649
+ "step": 3200
650
+ },
651
+ {
652
+ "epoch": 0.528,
653
+ "grad_norm": 12.450774192810059,
654
+ "learning_rate": 2.6311111111111115e-05,
655
+ "loss": 0.7134,
656
+ "step": 3300
657
+ },
658
+ {
659
+ "epoch": 0.528,
660
+ "eval_all-nli-dev_cosine_accuracy": 0.882,
661
+ "eval_all-nli-dev_dot_accuracy": 0.121,
662
+ "eval_all-nli-dev_euclidean_accuracy": 0.877,
663
+ "eval_all-nli-dev_manhattan_accuracy": 0.884,
664
+ "eval_all-nli-dev_max_accuracy": 0.884,
665
+ "eval_loss": 0.8214895725250244,
666
+ "eval_runtime": 4.6881,
667
+ "eval_samples_per_second": 213.307,
668
+ "eval_steps_per_second": 13.438,
669
+ "step": 3300
670
+ },
671
+ {
672
+ "epoch": 0.544,
673
+ "grad_norm": 13.840750694274902,
674
+ "learning_rate": 2.5422222222222227e-05,
675
+ "loss": 0.6645,
676
+ "step": 3400
677
+ },
678
+ {
679
+ "epoch": 0.544,
680
+ "eval_all-nli-dev_cosine_accuracy": 0.873,
681
+ "eval_all-nli-dev_dot_accuracy": 0.136,
682
+ "eval_all-nli-dev_euclidean_accuracy": 0.874,
683
+ "eval_all-nli-dev_manhattan_accuracy": 0.877,
684
+ "eval_all-nli-dev_max_accuracy": 0.877,
685
+ "eval_loss": 0.8888874053955078,
686
+ "eval_runtime": 4.6792,
687
+ "eval_samples_per_second": 213.711,
688
+ "eval_steps_per_second": 13.464,
689
+ "step": 3400
690
+ },
691
+ {
692
+ "epoch": 0.56,
693
+ "grad_norm": 9.944676399230957,
694
+ "learning_rate": 2.4533333333333334e-05,
695
+ "loss": 0.7073,
696
+ "step": 3500
697
+ },
698
+ {
699
+ "epoch": 0.56,
700
+ "eval_all-nli-dev_cosine_accuracy": 0.884,
701
+ "eval_all-nli-dev_dot_accuracy": 0.108,
702
+ "eval_all-nli-dev_euclidean_accuracy": 0.884,
703
+ "eval_all-nli-dev_manhattan_accuracy": 0.888,
704
+ "eval_all-nli-dev_max_accuracy": 0.888,
705
+ "eval_loss": 0.8373873829841614,
706
+ "eval_runtime": 4.6888,
707
+ "eval_samples_per_second": 213.273,
708
+ "eval_steps_per_second": 13.436,
709
+ "step": 3500
710
+ },
711
+ {
712
+ "epoch": 0.576,
713
+ "grad_norm": 23.035810470581055,
714
+ "learning_rate": 2.3644444444444446e-05,
715
+ "loss": 0.6679,
716
+ "step": 3600
717
+ },
718
+ {
719
+ "epoch": 0.576,
720
+ "eval_all-nli-dev_cosine_accuracy": 0.905,
721
+ "eval_all-nli-dev_dot_accuracy": 0.094,
722
+ "eval_all-nli-dev_euclidean_accuracy": 0.903,
723
+ "eval_all-nli-dev_manhattan_accuracy": 0.911,
724
+ "eval_all-nli-dev_max_accuracy": 0.911,
725
+ "eval_loss": 0.7780482172966003,
726
+ "eval_runtime": 4.6847,
727
+ "eval_samples_per_second": 213.461,
728
+ "eval_steps_per_second": 13.448,
729
+ "step": 3600
730
+ },
731
+ {
732
+ "epoch": 0.592,
733
+ "grad_norm": 12.241792678833008,
734
+ "learning_rate": 2.2755555555555557e-05,
735
+ "loss": 0.6609,
736
+ "step": 3700
737
+ },
738
+ {
739
+ "epoch": 0.592,
740
+ "eval_all-nli-dev_cosine_accuracy": 0.893,
741
+ "eval_all-nli-dev_dot_accuracy": 0.102,
742
+ "eval_all-nli-dev_euclidean_accuracy": 0.893,
743
+ "eval_all-nli-dev_manhattan_accuracy": 0.896,
744
+ "eval_all-nli-dev_max_accuracy": 0.896,
745
+ "eval_loss": 0.812877357006073,
746
+ "eval_runtime": 4.685,
747
+ "eval_samples_per_second": 213.449,
748
+ "eval_steps_per_second": 13.447,
749
+ "step": 3700
750
+ },
751
+ {
752
+ "epoch": 0.608,
753
+ "grad_norm": 23.00703239440918,
754
+ "learning_rate": 2.186666666666667e-05,
755
+ "loss": 0.687,
756
+ "step": 3800
757
+ },
758
+ {
759
+ "epoch": 0.608,
760
+ "eval_all-nli-dev_cosine_accuracy": 0.913,
761
+ "eval_all-nli-dev_dot_accuracy": 0.085,
762
+ "eval_all-nli-dev_euclidean_accuracy": 0.905,
763
+ "eval_all-nli-dev_manhattan_accuracy": 0.905,
764
+ "eval_all-nli-dev_max_accuracy": 0.913,
765
+ "eval_loss": 0.7215772271156311,
766
+ "eval_runtime": 4.6566,
767
+ "eval_samples_per_second": 214.751,
768
+ "eval_steps_per_second": 13.529,
769
+ "step": 3800
770
+ },
771
+ {
772
+ "epoch": 0.624,
773
+ "grad_norm": 13.749407768249512,
774
+ "learning_rate": 2.097777777777778e-05,
775
+ "loss": 0.5725,
776
+ "step": 3900
777
+ },
778
+ {
779
+ "epoch": 0.624,
780
+ "eval_all-nli-dev_cosine_accuracy": 0.912,
781
+ "eval_all-nli-dev_dot_accuracy": 0.09,
782
+ "eval_all-nli-dev_euclidean_accuracy": 0.908,
783
+ "eval_all-nli-dev_manhattan_accuracy": 0.92,
784
+ "eval_all-nli-dev_max_accuracy": 0.92,
785
+ "eval_loss": 0.7618492841720581,
786
+ "eval_runtime": 4.6929,
787
+ "eval_samples_per_second": 213.087,
788
+ "eval_steps_per_second": 13.424,
789
+ "step": 3900
790
+ },
791
+ {
792
+ "epoch": 0.64,
793
+ "grad_norm": 14.7637300491333,
794
+ "learning_rate": 2.008888888888889e-05,
795
+ "loss": 0.87,
796
+ "step": 4000
797
+ },
798
+ {
799
+ "epoch": 0.64,
800
+ "eval_all-nli-dev_cosine_accuracy": 0.909,
801
+ "eval_all-nli-dev_dot_accuracy": 0.086,
802
+ "eval_all-nli-dev_euclidean_accuracy": 0.909,
803
+ "eval_all-nli-dev_manhattan_accuracy": 0.909,
804
+ "eval_all-nli-dev_max_accuracy": 0.909,
805
+ "eval_loss": 0.706980288028717,
806
+ "eval_runtime": 4.6894,
807
+ "eval_samples_per_second": 213.247,
808
+ "eval_steps_per_second": 13.435,
809
+ "step": 4000
810
+ },
811
+ {
812
+ "epoch": 0.656,
813
+ "grad_norm": 16.75938606262207,
814
+ "learning_rate": 1.9200000000000003e-05,
815
+ "loss": 1.0892,
816
+ "step": 4100
817
+ },
818
+ {
819
+ "epoch": 0.656,
820
+ "eval_all-nli-dev_cosine_accuracy": 0.901,
821
+ "eval_all-nli-dev_dot_accuracy": 0.094,
822
+ "eval_all-nli-dev_euclidean_accuracy": 0.897,
823
+ "eval_all-nli-dev_manhattan_accuracy": 0.899,
824
+ "eval_all-nli-dev_max_accuracy": 0.901,
825
+ "eval_loss": 0.7424288392066956,
826
+ "eval_runtime": 4.6286,
827
+ "eval_samples_per_second": 216.046,
828
+ "eval_steps_per_second": 13.611,
829
+ "step": 4100
830
+ },
831
+ {
832
+ "epoch": 0.672,
833
+ "grad_norm": 17.46446418762207,
834
+ "learning_rate": 1.8311111111111114e-05,
835
+ "loss": 1.048,
836
+ "step": 4200
837
+ },
838
+ {
839
+ "epoch": 0.672,
840
+ "eval_all-nli-dev_cosine_accuracy": 0.908,
841
+ "eval_all-nli-dev_dot_accuracy": 0.093,
842
+ "eval_all-nli-dev_euclidean_accuracy": 0.908,
843
+ "eval_all-nli-dev_manhattan_accuracy": 0.909,
844
+ "eval_all-nli-dev_max_accuracy": 0.909,
845
+ "eval_loss": 0.6750496029853821,
846
+ "eval_runtime": 4.641,
847
+ "eval_samples_per_second": 215.47,
848
+ "eval_steps_per_second": 13.575,
849
+ "step": 4200
850
+ },
851
+ {
852
+ "epoch": 0.688,
853
+ "grad_norm": 18.15054702758789,
854
+ "learning_rate": 1.7422222222222222e-05,
855
+ "loss": 0.8571,
856
+ "step": 4300
857
+ },
858
+ {
859
+ "epoch": 0.688,
860
+ "eval_all-nli-dev_cosine_accuracy": 0.903,
861
+ "eval_all-nli-dev_dot_accuracy": 0.095,
862
+ "eval_all-nli-dev_euclidean_accuracy": 0.901,
863
+ "eval_all-nli-dev_manhattan_accuracy": 0.902,
864
+ "eval_all-nli-dev_max_accuracy": 0.903,
865
+ "eval_loss": 0.6474354863166809,
866
+ "eval_runtime": 4.7822,
867
+ "eval_samples_per_second": 209.111,
868
+ "eval_steps_per_second": 13.174,
869
+ "step": 4300
870
+ },
871
+ {
872
+ "epoch": 0.704,
873
+ "grad_norm": 15.00839614868164,
874
+ "learning_rate": 1.6533333333333333e-05,
875
+ "loss": 0.7945,
876
+ "step": 4400
877
+ },
878
+ {
879
+ "epoch": 0.704,
880
+ "eval_all-nli-dev_cosine_accuracy": 0.908,
881
+ "eval_all-nli-dev_dot_accuracy": 0.089,
882
+ "eval_all-nli-dev_euclidean_accuracy": 0.91,
883
+ "eval_all-nli-dev_manhattan_accuracy": 0.911,
884
+ "eval_all-nli-dev_max_accuracy": 0.911,
885
+ "eval_loss": 0.6094924211502075,
886
+ "eval_runtime": 4.6578,
887
+ "eval_samples_per_second": 214.695,
888
+ "eval_steps_per_second": 13.526,
889
+ "step": 4400
890
+ },
891
+ {
892
+ "epoch": 0.72,
893
+ "grad_norm": 24.833444595336914,
894
+ "learning_rate": 1.5644444444444444e-05,
895
+ "loss": 0.6717,
896
+ "step": 4500
897
+ },
898
+ {
899
+ "epoch": 0.72,
900
+ "eval_all-nli-dev_cosine_accuracy": 0.93,
901
+ "eval_all-nli-dev_dot_accuracy": 0.066,
902
+ "eval_all-nli-dev_euclidean_accuracy": 0.923,
903
+ "eval_all-nli-dev_manhattan_accuracy": 0.921,
904
+ "eval_all-nli-dev_max_accuracy": 0.93,
905
+ "eval_loss": 0.5663518309593201,
906
+ "eval_runtime": 4.7483,
907
+ "eval_samples_per_second": 210.6,
908
+ "eval_steps_per_second": 13.268,
909
+ "step": 4500
910
+ },
911
+ {
912
+ "epoch": 0.736,
913
+ "grad_norm": 1504.730224609375,
914
+ "learning_rate": 1.4755555555555556e-05,
915
+ "loss": 0.8161,
916
+ "step": 4600
917
+ },
918
+ {
919
+ "epoch": 0.736,
920
+ "eval_all-nli-dev_cosine_accuracy": 0.919,
921
+ "eval_all-nli-dev_dot_accuracy": 0.07,
922
+ "eval_all-nli-dev_euclidean_accuracy": 0.916,
923
+ "eval_all-nli-dev_manhattan_accuracy": 0.918,
924
+ "eval_all-nli-dev_max_accuracy": 0.919,
925
+ "eval_loss": 0.5479408502578735,
926
+ "eval_runtime": 4.6248,
927
+ "eval_samples_per_second": 216.224,
928
+ "eval_steps_per_second": 13.622,
929
+ "step": 4600
930
+ },
931
+ {
932
+ "epoch": 0.752,
933
+ "grad_norm": 30.87934684753418,
934
+ "learning_rate": 1.3866666666666667e-05,
935
+ "loss": 0.7917,
936
+ "step": 4700
937
+ },
938
+ {
939
+ "epoch": 0.752,
940
+ "eval_all-nli-dev_cosine_accuracy": 0.911,
941
+ "eval_all-nli-dev_dot_accuracy": 0.083,
942
+ "eval_all-nli-dev_euclidean_accuracy": 0.909,
943
+ "eval_all-nli-dev_manhattan_accuracy": 0.907,
944
+ "eval_all-nli-dev_max_accuracy": 0.911,
945
+ "eval_loss": 0.6419683694839478,
946
+ "eval_runtime": 4.5916,
947
+ "eval_samples_per_second": 217.788,
948
+ "eval_steps_per_second": 13.721,
949
+ "step": 4700
950
+ },
951
+ {
952
+ "epoch": 0.768,
953
+ "grad_norm": 23.224735260009766,
954
+ "learning_rate": 1.2977777777777777e-05,
955
+ "loss": 0.7711,
956
+ "step": 4800
957
+ },
958
+ {
959
+ "epoch": 0.768,
960
+ "eval_all-nli-dev_cosine_accuracy": 0.916,
961
+ "eval_all-nli-dev_dot_accuracy": 0.078,
962
+ "eval_all-nli-dev_euclidean_accuracy": 0.914,
963
+ "eval_all-nli-dev_manhattan_accuracy": 0.913,
964
+ "eval_all-nli-dev_max_accuracy": 0.916,
965
+ "eval_loss": 0.5856308341026306,
966
+ "eval_runtime": 4.5755,
967
+ "eval_samples_per_second": 218.553,
968
+ "eval_steps_per_second": 13.769,
969
+ "step": 4800
970
+ },
971
+ {
972
+ "epoch": 0.784,
973
+ "grad_norm": 13.215950012207031,
974
+ "learning_rate": 1.208888888888889e-05,
975
+ "loss": 0.6441,
976
+ "step": 4900
977
+ },
978
+ {
979
+ "epoch": 0.784,
980
+ "eval_all-nli-dev_cosine_accuracy": 0.916,
981
+ "eval_all-nli-dev_dot_accuracy": 0.079,
982
+ "eval_all-nli-dev_euclidean_accuracy": 0.913,
983
+ "eval_all-nli-dev_manhattan_accuracy": 0.913,
984
+ "eval_all-nli-dev_max_accuracy": 0.916,
985
+ "eval_loss": 0.5775041580200195,
986
+ "eval_runtime": 4.5681,
987
+ "eval_samples_per_second": 218.91,
988
+ "eval_steps_per_second": 13.791,
989
+ "step": 4900
990
+ },
991
+ {
992
+ "epoch": 0.8,
993
+ "grad_norm": 18.222217559814453,
994
+ "learning_rate": 1.1200000000000001e-05,
995
+ "loss": 0.7766,
996
+ "step": 5000
997
+ },
998
+ {
999
+ "epoch": 0.8,
1000
+ "eval_all-nli-dev_cosine_accuracy": 0.922,
1001
+ "eval_all-nli-dev_dot_accuracy": 0.077,
1002
+ "eval_all-nli-dev_euclidean_accuracy": 0.92,
1003
+ "eval_all-nli-dev_manhattan_accuracy": 0.917,
1004
+ "eval_all-nli-dev_max_accuracy": 0.922,
1005
+ "eval_loss": 0.5785014629364014,
1006
+ "eval_runtime": 4.6158,
1007
+ "eval_samples_per_second": 216.645,
1008
+ "eval_steps_per_second": 13.649,
1009
+ "step": 5000
1010
+ },
1011
+ {
1012
+ "epoch": 0.816,
1013
+ "grad_norm": 10.330174446105957,
1014
+ "learning_rate": 1.031111111111111e-05,
1015
+ "loss": 0.6009,
1016
+ "step": 5100
1017
+ },
1018
+ {
1019
+ "epoch": 0.816,
1020
+ "eval_all-nli-dev_cosine_accuracy": 0.921,
1021
+ "eval_all-nli-dev_dot_accuracy": 0.081,
1022
+ "eval_all-nli-dev_euclidean_accuracy": 0.917,
1023
+ "eval_all-nli-dev_manhattan_accuracy": 0.919,
1024
+ "eval_all-nli-dev_max_accuracy": 0.921,
1025
+ "eval_loss": 0.5679826140403748,
1026
+ "eval_runtime": 4.5803,
1027
+ "eval_samples_per_second": 218.325,
1028
+ "eval_steps_per_second": 13.754,
1029
+ "step": 5100
1030
+ },
1031
+ {
1032
+ "epoch": 0.832,
1033
+ "grad_norm": 14.917418479919434,
1034
+ "learning_rate": 9.422222222222222e-06,
1035
+ "loss": 0.6711,
1036
+ "step": 5200
1037
+ },
1038
+ {
1039
+ "epoch": 0.832,
1040
+ "eval_all-nli-dev_cosine_accuracy": 0.921,
1041
+ "eval_all-nli-dev_dot_accuracy": 0.074,
1042
+ "eval_all-nli-dev_euclidean_accuracy": 0.917,
1043
+ "eval_all-nli-dev_manhattan_accuracy": 0.92,
1044
+ "eval_all-nli-dev_max_accuracy": 0.921,
1045
+ "eval_loss": 0.5487431883811951,
1046
+ "eval_runtime": 4.6796,
1047
+ "eval_samples_per_second": 213.694,
1048
+ "eval_steps_per_second": 13.463,
1049
+ "step": 5200
1050
+ },
1051
+ {
1052
+ "epoch": 0.848,
1053
+ "grad_norm": 32.70161056518555,
1054
+ "learning_rate": 8.533333333333334e-06,
1055
+ "loss": 0.618,
1056
+ "step": 5300
1057
+ },
1058
+ {
1059
+ "epoch": 0.848,
1060
+ "eval_all-nli-dev_cosine_accuracy": 0.926,
1061
+ "eval_all-nli-dev_dot_accuracy": 0.074,
1062
+ "eval_all-nli-dev_euclidean_accuracy": 0.921,
1063
+ "eval_all-nli-dev_manhattan_accuracy": 0.922,
1064
+ "eval_all-nli-dev_max_accuracy": 0.926,
1065
+ "eval_loss": 0.5450394749641418,
1066
+ "eval_runtime": 4.662,
1067
+ "eval_samples_per_second": 214.5,
1068
+ "eval_steps_per_second": 13.513,
1069
+ "step": 5300
1070
+ },
1071
+ {
1072
+ "epoch": 0.864,
1073
+ "grad_norm": 13.764747619628906,
1074
+ "learning_rate": 7.644444444444445e-06,
1075
+ "loss": 0.6702,
1076
+ "step": 5400
1077
+ },
1078
+ {
1079
+ "epoch": 0.864,
1080
+ "eval_all-nli-dev_cosine_accuracy": 0.926,
1081
+ "eval_all-nli-dev_dot_accuracy": 0.073,
1082
+ "eval_all-nli-dev_euclidean_accuracy": 0.921,
1083
+ "eval_all-nli-dev_manhattan_accuracy": 0.919,
1084
+ "eval_all-nli-dev_max_accuracy": 0.926,
1085
+ "eval_loss": 0.5497583150863647,
1086
+ "eval_runtime": 4.5535,
1087
+ "eval_samples_per_second": 219.613,
1088
+ "eval_steps_per_second": 13.836,
1089
+ "step": 5400
1090
+ },
1091
+ {
1092
+ "epoch": 0.88,
1093
+ "grad_norm": 29.501554489135742,
1094
+ "learning_rate": 6.755555555555555e-06,
1095
+ "loss": 0.7039,
1096
+ "step": 5500
1097
+ },
1098
+ {
1099
+ "epoch": 0.88,
1100
+ "eval_all-nli-dev_cosine_accuracy": 0.927,
1101
+ "eval_all-nli-dev_dot_accuracy": 0.07,
1102
+ "eval_all-nli-dev_euclidean_accuracy": 0.926,
1103
+ "eval_all-nli-dev_manhattan_accuracy": 0.922,
1104
+ "eval_all-nli-dev_max_accuracy": 0.927,
1105
+ "eval_loss": 0.5191856622695923,
1106
+ "eval_runtime": 4.5392,
1107
+ "eval_samples_per_second": 220.305,
1108
+ "eval_steps_per_second": 13.879,
1109
+ "step": 5500
1110
+ },
1111
+ {
1112
+ "epoch": 0.896,
1113
+ "grad_norm": 19.63087272644043,
1114
+ "learning_rate": 5.866666666666667e-06,
1115
+ "loss": 0.6114,
1116
+ "step": 5600
1117
+ },
1118
+ {
1119
+ "epoch": 0.896,
1120
+ "eval_all-nli-dev_cosine_accuracy": 0.932,
1121
+ "eval_all-nli-dev_dot_accuracy": 0.067,
1122
+ "eval_all-nli-dev_euclidean_accuracy": 0.931,
1123
+ "eval_all-nli-dev_manhattan_accuracy": 0.93,
1124
+ "eval_all-nli-dev_max_accuracy": 0.932,
1125
+ "eval_loss": 0.5045494437217712,
1126
+ "eval_runtime": 4.6367,
1127
+ "eval_samples_per_second": 215.672,
1128
+ "eval_steps_per_second": 13.587,
1129
+ "step": 5600
1130
+ },
1131
+ {
1132
+ "epoch": 0.912,
1133
+ "grad_norm": 57.868019104003906,
1134
+ "learning_rate": 4.977777777777778e-06,
1135
+ "loss": 0.7761,
1136
+ "step": 5700
1137
+ },
1138
+ {
1139
+ "epoch": 0.912,
1140
+ "eval_all-nli-dev_cosine_accuracy": 0.934,
1141
+ "eval_all-nli-dev_dot_accuracy": 0.061,
1142
+ "eval_all-nli-dev_euclidean_accuracy": 0.931,
1143
+ "eval_all-nli-dev_manhattan_accuracy": 0.928,
1144
+ "eval_all-nli-dev_max_accuracy": 0.934,
1145
+ "eval_loss": 0.5033252835273743,
1146
+ "eval_runtime": 4.6312,
1147
+ "eval_samples_per_second": 215.928,
1148
+ "eval_steps_per_second": 13.603,
1149
+ "step": 5700
1150
+ },
1151
+ {
1152
+ "epoch": 0.928,
1153
+ "grad_norm": 11.63007640838623,
1154
+ "learning_rate": 4.088888888888889e-06,
1155
+ "loss": 0.6248,
1156
+ "step": 5800
1157
+ },
1158
+ {
1159
+ "epoch": 0.928,
1160
+ "eval_all-nli-dev_cosine_accuracy": 0.932,
1161
+ "eval_all-nli-dev_dot_accuracy": 0.068,
1162
+ "eval_all-nli-dev_euclidean_accuracy": 0.926,
1163
+ "eval_all-nli-dev_manhattan_accuracy": 0.926,
1164
+ "eval_all-nli-dev_max_accuracy": 0.932,
1165
+ "eval_loss": 0.5013440251350403,
1166
+ "eval_runtime": 4.6162,
1167
+ "eval_samples_per_second": 216.629,
1168
+ "eval_steps_per_second": 13.648,
1169
+ "step": 5800
1170
+ },
1171
+ {
1172
+ "epoch": 0.944,
1173
+ "grad_norm": 16.12616539001465,
1174
+ "learning_rate": 3.2000000000000003e-06,
1175
+ "loss": 0.8359,
1176
+ "step": 5900
1177
+ },
1178
+ {
1179
+ "epoch": 0.944,
1180
+ "eval_all-nli-dev_cosine_accuracy": 0.93,
1181
+ "eval_all-nli-dev_dot_accuracy": 0.07,
1182
+ "eval_all-nli-dev_euclidean_accuracy": 0.926,
1183
+ "eval_all-nli-dev_manhattan_accuracy": 0.923,
1184
+ "eval_all-nli-dev_max_accuracy": 0.93,
1185
+ "eval_loss": 0.49764034152030945,
1186
+ "eval_runtime": 4.6817,
1187
+ "eval_samples_per_second": 213.6,
1188
+ "eval_steps_per_second": 13.457,
1189
+ "step": 5900
1190
+ },
1191
+ {
1192
+ "epoch": 0.96,
1193
+ "grad_norm": 16.06106185913086,
1194
+ "learning_rate": 2.311111111111111e-06,
1195
+ "loss": 0.8764,
1196
+ "step": 6000
1197
+ },
1198
+ {
1199
+ "epoch": 0.96,
1200
+ "eval_all-nli-dev_cosine_accuracy": 0.936,
1201
+ "eval_all-nli-dev_dot_accuracy": 0.062,
1202
+ "eval_all-nli-dev_euclidean_accuracy": 0.928,
1203
+ "eval_all-nli-dev_manhattan_accuracy": 0.928,
1204
+ "eval_all-nli-dev_max_accuracy": 0.936,
1205
+ "eval_loss": 0.49757900834083557,
1206
+ "eval_runtime": 4.6133,
1207
+ "eval_samples_per_second": 216.765,
1208
+ "eval_steps_per_second": 13.656,
1209
+ "step": 6000
1210
+ },
1211
+ {
1212
+ "epoch": 0.976,
1213
+ "grad_norm": 0.0003809410845860839,
1214
+ "learning_rate": 1.4222222222222223e-06,
1215
+ "loss": 0.763,
1216
+ "step": 6100
1217
+ },
1218
+ {
1219
+ "epoch": 0.976,
1220
+ "eval_all-nli-dev_cosine_accuracy": 0.935,
1221
+ "eval_all-nli-dev_dot_accuracy": 0.061,
1222
+ "eval_all-nli-dev_euclidean_accuracy": 0.93,
1223
+ "eval_all-nli-dev_manhattan_accuracy": 0.929,
1224
+ "eval_all-nli-dev_max_accuracy": 0.935,
1225
+ "eval_loss": 0.48454272747039795,
1226
+ "eval_runtime": 4.737,
1227
+ "eval_samples_per_second": 211.106,
1228
+ "eval_steps_per_second": 13.3,
1229
+ "step": 6100
1230
+ }
1231
+ ],
1232
+ "logging_steps": 100,
1233
+ "max_steps": 6250,
1234
+ "num_input_tokens_seen": 0,
1235
+ "num_train_epochs": 1,
1236
+ "save_steps": 100,
1237
+ "stateful_callbacks": {
1238
+ "TrainerControl": {
1239
+ "args": {
1240
+ "should_epoch_stop": false,
1241
+ "should_evaluate": false,
1242
+ "should_log": false,
1243
+ "should_save": true,
1244
+ "should_training_stop": false
1245
+ },
1246
+ "attributes": {}
1247
+ }
1248
+ },
1249
+ "total_flos": 0.0,
1250
+ "train_batch_size": 16,
1251
+ "trial_name": null,
1252
+ "trial_params": null
1253
+ }
checkpoint-6100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df7676b7e53f89034ceead350ac79887e4e5a23b5683d4e1a5f7514018af4ca6
3
+ size 5432
checkpoint-6200/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-6200/README.md ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:100K<n<1M
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: FacebookAI/xlm-roberta-base
12
+ metrics:
13
+ - cosine_accuracy
14
+ - dot_accuracy
15
+ - manhattan_accuracy
16
+ - euclidean_accuracy
17
+ - max_accuracy
18
+ widget:
19
+ - source_sentence: a baby smiling
20
+ sentences:
21
+ - The boy is smiling
22
+ - He is playing a song.
23
+ - A man is sleeping.
24
+ - source_sentence: an eagle flies
25
+ sentences:
26
+ - The person is amused.
27
+ - There is a land race.
28
+ - A man is sleeping.
29
+ - source_sentence: There's a dock
30
+ sentences:
31
+ - a person outside
32
+ - The biker is a human.
33
+ - A man is sleeping.
34
+ - source_sentence: A woman sings.
35
+ sentences:
36
+ - The woman is singing.
37
+ - Girls dance together.
38
+ - A man playing ice hockey.
39
+ - source_sentence: The boy scowls
40
+ sentences:
41
+ - The boy is outside.
42
+ - The person is inside.
43
+ - two men stand alone
44
+ pipeline_tag: sentence-similarity
45
+ model-index:
46
+ - name: SentenceTransformer based on FacebookAI/xlm-roberta-base
47
+ results:
48
+ - task:
49
+ type: triplet
50
+ name: Triplet
51
+ dataset:
52
+ name: all nli dev
53
+ type: all-nli-dev
54
+ metrics:
55
+ - type: cosine_accuracy
56
+ value: 0.935
57
+ name: Cosine Accuracy
58
+ - type: dot_accuracy
59
+ value: 0.062
60
+ name: Dot Accuracy
61
+ - type: manhattan_accuracy
62
+ value: 0.929
63
+ name: Manhattan Accuracy
64
+ - type: euclidean_accuracy
65
+ value: 0.928
66
+ name: Euclidean Accuracy
67
+ - type: max_accuracy
68
+ value: 0.935
69
+ name: Max Accuracy
70
+ ---
71
+
72
+ # SentenceTransformer based on FacebookAI/xlm-roberta-base
73
+
74
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
75
+
76
+ ## Model Details
77
+
78
+ ### Model Description
79
+ - **Model Type:** Sentence Transformer
80
+ - **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
81
+ - **Maximum Sequence Length:** 512 tokens
82
+ - **Output Dimensionality:** 768 tokens
83
+ - **Similarity Function:** Cosine Similarity
84
+ - **Training Dataset:**
85
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
86
+ - **Language:** en
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
100
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("sentence_transformers_model_id")
120
+ # Run inference
121
+ sentences = [
122
+ 'The boy scowls',
123
+ 'The boy is outside.',
124
+ 'The person is inside.',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 768]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Triplet
165
+ * Dataset: `all-nli-dev`
166
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
167
+
168
+ | Metric | Value |
169
+ |:-------------------|:----------|
170
+ | cosine_accuracy | 0.935 |
171
+ | dot_accuracy | 0.062 |
172
+ | manhattan_accuracy | 0.929 |
173
+ | euclidean_accuracy | 0.928 |
174
+ | **max_accuracy** | **0.935** |
175
+
176
+ <!--
177
+ ## Bias, Risks and Limitations
178
+
179
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
180
+ -->
181
+
182
+ <!--
183
+ ### Recommendations
184
+
185
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
186
+ -->
187
+
188
+ ## Training Details
189
+
190
+ ### Training Dataset
191
+
192
+ #### sentence-transformers/all-nli
193
+
194
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
195
+ * Size: 100,000 training samples
196
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | anchor | positive | negative |
199
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
200
+ | type | string | string | string |
201
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
202
+ * Samples:
203
+ | anchor | positive | negative |
204
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
205
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
206
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
207
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
208
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
209
+ ```json
210
+ {
211
+ "scale": 20.0,
212
+ "similarity_fct": "cos_sim"
213
+ }
214
+ ```
215
+
216
+ ### Evaluation Dataset
217
+
218
+ #### sentence-transformers/all-nli
219
+
220
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
221
+ * Size: 1,000 evaluation samples
222
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | anchor | positive | negative |
225
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
226
+ | type | string | string | string |
227
+ | details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
228
+ * Samples:
229
+ | anchor | positive | negative |
230
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
231
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
232
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
233
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
234
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
235
+ ```json
236
+ {
237
+ "scale": 20.0,
238
+ "similarity_fct": "cos_sim"
239
+ }
240
+ ```
241
+
242
+ ### Training Hyperparameters
243
+ #### Non-Default Hyperparameters
244
+
245
+ - `eval_strategy`: steps
246
+ - `per_device_train_batch_size`: 16
247
+ - `per_device_eval_batch_size`: 16
248
+ - `num_train_epochs`: 1
249
+ - `warmup_ratio`: 0.1
250
+ - `fp16`: True
251
+ - `batch_sampler`: no_duplicates
252
+
253
+ #### All Hyperparameters
254
+ <details><summary>Click to expand</summary>
255
+
256
+ - `overwrite_output_dir`: False
257
+ - `do_predict`: False
258
+ - `eval_strategy`: steps
259
+ - `prediction_loss_only`: True
260
+ - `per_device_train_batch_size`: 16
261
+ - `per_device_eval_batch_size`: 16
262
+ - `per_gpu_train_batch_size`: None
263
+ - `per_gpu_eval_batch_size`: None
264
+ - `gradient_accumulation_steps`: 1
265
+ - `eval_accumulation_steps`: None
266
+ - `learning_rate`: 5e-05
267
+ - `weight_decay`: 0.0
268
+ - `adam_beta1`: 0.9
269
+ - `adam_beta2`: 0.999
270
+ - `adam_epsilon`: 1e-08
271
+ - `max_grad_norm`: 1.0
272
+ - `num_train_epochs`: 1
273
+ - `max_steps`: -1
274
+ - `lr_scheduler_type`: linear
275
+ - `lr_scheduler_kwargs`: {}
276
+ - `warmup_ratio`: 0.1
277
+ - `warmup_steps`: 0
278
+ - `log_level`: passive
279
+ - `log_level_replica`: warning
280
+ - `log_on_each_node`: True
281
+ - `logging_nan_inf_filter`: True
282
+ - `save_safetensors`: True
283
+ - `save_on_each_node`: False
284
+ - `save_only_model`: False
285
+ - `restore_callback_states_from_checkpoint`: False
286
+ - `no_cuda`: False
287
+ - `use_cpu`: False
288
+ - `use_mps_device`: False
289
+ - `seed`: 42
290
+ - `data_seed`: None
291
+ - `jit_mode_eval`: False
292
+ - `use_ipex`: False
293
+ - `bf16`: False
294
+ - `fp16`: True
295
+ - `fp16_opt_level`: O1
296
+ - `half_precision_backend`: auto
297
+ - `bf16_full_eval`: False
298
+ - `fp16_full_eval`: False
299
+ - `tf32`: None
300
+ - `local_rank`: 0
301
+ - `ddp_backend`: None
302
+ - `tpu_num_cores`: None
303
+ - `tpu_metrics_debug`: False
304
+ - `debug`: []
305
+ - `dataloader_drop_last`: False
306
+ - `dataloader_num_workers`: 0
307
+ - `dataloader_prefetch_factor`: None
308
+ - `past_index`: -1
309
+ - `disable_tqdm`: False
310
+ - `remove_unused_columns`: True
311
+ - `label_names`: None
312
+ - `load_best_model_at_end`: False
313
+ - `ignore_data_skip`: False
314
+ - `fsdp`: []
315
+ - `fsdp_min_num_params`: 0
316
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
317
+ - `fsdp_transformer_layer_cls_to_wrap`: None
318
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
319
+ - `deepspeed`: None
320
+ - `label_smoothing_factor`: 0.0
321
+ - `optim`: adamw_torch
322
+ - `optim_args`: None
323
+ - `adafactor`: False
324
+ - `group_by_length`: False
325
+ - `length_column_name`: length
326
+ - `ddp_find_unused_parameters`: None
327
+ - `ddp_bucket_cap_mb`: None
328
+ - `ddp_broadcast_buffers`: False
329
+ - `dataloader_pin_memory`: True
330
+ - `dataloader_persistent_workers`: False
331
+ - `skip_memory_metrics`: True
332
+ - `use_legacy_prediction_loop`: False
333
+ - `push_to_hub`: False
334
+ - `resume_from_checkpoint`: None
335
+ - `hub_model_id`: None
336
+ - `hub_strategy`: every_save
337
+ - `hub_private_repo`: False
338
+ - `hub_always_push`: False
339
+ - `gradient_checkpointing`: False
340
+ - `gradient_checkpointing_kwargs`: None
341
+ - `include_inputs_for_metrics`: False
342
+ - `eval_do_concat_batches`: True
343
+ - `fp16_backend`: auto
344
+ - `push_to_hub_model_id`: None
345
+ - `push_to_hub_organization`: None
346
+ - `mp_parameters`:
347
+ - `auto_find_batch_size`: False
348
+ - `full_determinism`: False
349
+ - `torchdynamo`: None
350
+ - `ray_scope`: last
351
+ - `ddp_timeout`: 1800
352
+ - `torch_compile`: False
353
+ - `torch_compile_backend`: None
354
+ - `torch_compile_mode`: None
355
+ - `dispatch_batches`: None
356
+ - `split_batches`: None
357
+ - `include_tokens_per_second`: False
358
+ - `include_num_input_tokens_seen`: False
359
+ - `neftune_noise_alpha`: None
360
+ - `optim_target_modules`: None
361
+ - `batch_eval_metrics`: False
362
+ - `batch_sampler`: no_duplicates
363
+ - `multi_dataset_batch_sampler`: proportional
364
+
365
+ </details>
366
+
367
+ ### Training Logs
368
+ | Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy |
369
+ |:-----:|:----:|:-------------:|:------:|:------------------------:|
370
+ | 0 | 0 | - | - | 0.587 |
371
+ | 0.016 | 100 | 3.4547 | 2.2853 | 0.801 |
372
+ | 0.032 | 200 | 1.6761 | 1.3493 | 0.856 |
373
+ | 0.048 | 300 | 1.5528 | 1.4181 | 0.83 |
374
+ | 0.064 | 400 | 1.0069 | 1.3277 | 0.835 |
375
+ | 0.08 | 500 | 1.0611 | 1.4610 | 0.847 |
376
+ | 0.096 | 600 | 1.1424 | 1.7394 | 0.805 |
377
+ | 0.112 | 700 | 1.3545 | 1.4179 | 0.83 |
378
+ | 0.128 | 800 | 1.3587 | 1.6350 | 0.84 |
379
+ | 0.144 | 900 | 1.237 | 1.6794 | 0.801 |
380
+ | 0.16 | 1000 | 1.2029 | 1.6733 | 0.811 |
381
+ | 0.176 | 1100 | 1.2748 | 1.6360 | 0.818 |
382
+ | 0.192 | 1200 | 1.1433 | 1.7952 | 0.806 |
383
+ | 0.208 | 1300 | 1.0113 | 1.4315 | 0.817 |
384
+ | 0.224 | 1400 | 0.8216 | 1.6300 | 0.776 |
385
+ | 0.24 | 1500 | 1.3451 | 1.1566 | 0.856 |
386
+ | 0.256 | 1600 | 0.8745 | 1.2075 | 0.838 |
387
+ | 0.272 | 1700 | 0.9945 | 1.3296 | 0.831 |
388
+ | 0.288 | 1800 | 0.9827 | 1.3052 | 0.844 |
389
+ | 0.304 | 1900 | 0.974 | 1.1643 | 0.85 |
390
+ | 0.32 | 2000 | 0.7555 | 1.2738 | 0.869 |
391
+ | 0.336 | 2100 | 0.7176 | 1.3749 | 0.832 |
392
+ | 0.352 | 2200 | 0.834 | 1.0712 | 0.879 |
393
+ | 0.368 | 2300 | 1.0819 | 1.2763 | 0.849 |
394
+ | 0.384 | 2400 | 0.9515 | 1.1384 | 0.848 |
395
+ | 0.4 | 2500 | 0.7828 | 1.0879 | 0.861 |
396
+ | 0.416 | 2600 | 0.7268 | 0.9835 | 0.868 |
397
+ | 0.432 | 2700 | 0.9228 | 1.1840 | 0.851 |
398
+ | 0.448 | 2800 | 1.0017 | 1.1968 | 0.853 |
399
+ | 0.464 | 2900 | 0.9138 | 0.9931 | 0.869 |
400
+ | 0.48 | 3000 | 0.8498 | 0.9926 | 0.876 |
401
+ | 0.496 | 3100 | 0.9682 | 1.0004 | 0.866 |
402
+ | 0.512 | 3200 | 0.7227 | 0.8490 | 0.883 |
403
+ | 0.528 | 3300 | 0.7134 | 0.8215 | 0.884 |
404
+ | 0.544 | 3400 | 0.6645 | 0.8889 | 0.877 |
405
+ | 0.56 | 3500 | 0.7073 | 0.8374 | 0.888 |
406
+ | 0.576 | 3600 | 0.6679 | 0.7780 | 0.911 |
407
+ | 0.592 | 3700 | 0.6609 | 0.8129 | 0.896 |
408
+ | 0.608 | 3800 | 0.687 | 0.7216 | 0.913 |
409
+ | 0.624 | 3900 | 0.5725 | 0.7618 | 0.92 |
410
+ | 0.64 | 4000 | 0.87 | 0.7070 | 0.909 |
411
+ | 0.656 | 4100 | 1.0892 | 0.7424 | 0.901 |
412
+ | 0.672 | 4200 | 1.048 | 0.6750 | 0.909 |
413
+ | 0.688 | 4300 | 0.8571 | 0.6474 | 0.903 |
414
+ | 0.704 | 4400 | 0.7945 | 0.6095 | 0.911 |
415
+ | 0.72 | 4500 | 0.6717 | 0.5664 | 0.93 |
416
+ | 0.736 | 4600 | 0.8161 | 0.5479 | 0.919 |
417
+ | 0.752 | 4700 | 0.7917 | 0.6420 | 0.911 |
418
+ | 0.768 | 4800 | 0.7711 | 0.5856 | 0.916 |
419
+ | 0.784 | 4900 | 0.6441 | 0.5775 | 0.916 |
420
+ | 0.8 | 5000 | 0.7766 | 0.5785 | 0.922 |
421
+ | 0.816 | 5100 | 0.6009 | 0.5680 | 0.921 |
422
+ | 0.832 | 5200 | 0.6711 | 0.5487 | 0.921 |
423
+ | 0.848 | 5300 | 0.618 | 0.5450 | 0.926 |
424
+ | 0.864 | 5400 | 0.6702 | 0.5498 | 0.926 |
425
+ | 0.88 | 5500 | 0.7039 | 0.5192 | 0.927 |
426
+ | 0.896 | 5600 | 0.6114 | 0.5045 | 0.932 |
427
+ | 0.912 | 5700 | 0.7761 | 0.5033 | 0.934 |
428
+ | 0.928 | 5800 | 0.6248 | 0.5013 | 0.932 |
429
+ | 0.944 | 5900 | 0.8359 | 0.4976 | 0.93 |
430
+ | 0.96 | 6000 | 0.8764 | 0.4976 | 0.936 |
431
+ | 0.976 | 6100 | 0.763 | 0.4845 | 0.935 |
432
+ | 0.992 | 6200 | 0.0001 | 0.4844 | 0.935 |
433
+
434
+
435
+ ### Framework Versions
436
+ - Python: 3.9.10
437
+ - Sentence Transformers: 3.0.0
438
+ - Transformers: 4.41.2
439
+ - PyTorch: 2.3.0+cu121
440
+ - Accelerate: 0.26.1
441
+ - Datasets: 2.16.1
442
+ - Tokenizers: 0.19.1
443
+
444
+ ## Citation
445
+
446
+ ### BibTeX
447
+
448
+ #### Sentence Transformers
449
+ ```bibtex
450
+ @inproceedings{reimers-2019-sentence-bert,
451
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
452
+ author = "Reimers, Nils and Gurevych, Iryna",
453
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
454
+ month = "11",
455
+ year = "2019",
456
+ publisher = "Association for Computational Linguistics",
457
+ url = "https://arxiv.org/abs/1908.10084",
458
+ }
459
+ ```
460
+
461
+ #### MultipleNegativesRankingLoss
462
+ ```bibtex
463
+ @misc{henderson2017efficient,
464
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
465
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
466
+ year={2017},
467
+ eprint={1705.00652},
468
+ archivePrefix={arXiv},
469
+ primaryClass={cs.CL}
470
+ }
471
+ ```
472
+
473
+ <!--
474
+ ## Glossary
475
+
476
+ *Clearly define terms in order to be accessible across audiences.*
477
+ -->
478
+
479
+ <!--
480
+ ## Model Card Authors
481
+
482
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
483
+ -->
484
+
485
+ <!--
486
+ ## Model Card Contact
487
+
488
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
489
+ -->
checkpoint-6200/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "FacebookAI/xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoint-6200/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-6200/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a640fefad3ae15b58f57c08fdf9fdbd2a689e09a1c2a9311d80e3871baa2b231
3
+ size 1112197096
checkpoint-6200/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-6200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34d15e79fa9dd9d19937b3ba4d200bb605b7540488aeb265315dc95f87b2ec3b
3
+ size 2219789306
checkpoint-6200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67b6d3bfccdfbb1ddedc6de3d3e23f48a465085a25782949ad8fe6c52ed51ecf
3
+ size 14244
checkpoint-6200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a78525a6e10b9c5925f8336f7f8f26d7a6a28b1454f41dfa2b2beab77c11fff4
3
+ size 1064
checkpoint-6200/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-6200/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
checkpoint-6200/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
checkpoint-6200/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
checkpoint-6200/tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
checkpoint-6200/trainer_state.json ADDED
@@ -0,0 +1,1273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.992,
5
+ "eval_steps": 100,
6
+ "global_step": 6200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016,
13
+ "grad_norm": 203.1111602783203,
14
+ "learning_rate": 7.520000000000001e-06,
15
+ "loss": 3.4547,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.016,
20
+ "eval_all-nli-dev_cosine_accuracy": 0.737,
21
+ "eval_all-nli-dev_dot_accuracy": 0.319,
22
+ "eval_all-nli-dev_euclidean_accuracy": 0.737,
23
+ "eval_all-nli-dev_manhattan_accuracy": 0.801,
24
+ "eval_all-nli-dev_max_accuracy": 0.801,
25
+ "eval_loss": 2.2853124141693115,
26
+ "eval_runtime": 4.7392,
27
+ "eval_samples_per_second": 211.008,
28
+ "eval_steps_per_second": 13.294,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.032,
33
+ "grad_norm": 38.57483673095703,
34
+ "learning_rate": 1.552e-05,
35
+ "loss": 1.6761,
36
+ "step": 200
37
+ },
38
+ {
39
+ "epoch": 0.032,
40
+ "eval_all-nli-dev_cosine_accuracy": 0.826,
41
+ "eval_all-nli-dev_dot_accuracy": 0.267,
42
+ "eval_all-nli-dev_euclidean_accuracy": 0.83,
43
+ "eval_all-nli-dev_manhattan_accuracy": 0.856,
44
+ "eval_all-nli-dev_max_accuracy": 0.856,
45
+ "eval_loss": 1.3493391275405884,
46
+ "eval_runtime": 4.734,
47
+ "eval_samples_per_second": 211.236,
48
+ "eval_steps_per_second": 13.308,
49
+ "step": 200
50
+ },
51
+ {
52
+ "epoch": 0.048,
53
+ "grad_norm": 36.92991638183594,
54
+ "learning_rate": 2.3520000000000002e-05,
55
+ "loss": 1.5528,
56
+ "step": 300
57
+ },
58
+ {
59
+ "epoch": 0.048,
60
+ "eval_all-nli-dev_cosine_accuracy": 0.805,
61
+ "eval_all-nli-dev_dot_accuracy": 0.29,
62
+ "eval_all-nli-dev_euclidean_accuracy": 0.818,
63
+ "eval_all-nli-dev_manhattan_accuracy": 0.83,
64
+ "eval_all-nli-dev_max_accuracy": 0.83,
65
+ "eval_loss": 1.4180811643600464,
66
+ "eval_runtime": 4.629,
67
+ "eval_samples_per_second": 216.028,
68
+ "eval_steps_per_second": 13.61,
69
+ "step": 300
70
+ },
71
+ {
72
+ "epoch": 0.064,
73
+ "grad_norm": 35.267967224121094,
74
+ "learning_rate": 3.1519999999999996e-05,
75
+ "loss": 1.0069,
76
+ "step": 400
77
+ },
78
+ {
79
+ "epoch": 0.064,
80
+ "eval_all-nli-dev_cosine_accuracy": 0.819,
81
+ "eval_all-nli-dev_dot_accuracy": 0.244,
82
+ "eval_all-nli-dev_euclidean_accuracy": 0.824,
83
+ "eval_all-nli-dev_manhattan_accuracy": 0.835,
84
+ "eval_all-nli-dev_max_accuracy": 0.835,
85
+ "eval_loss": 1.3276922702789307,
86
+ "eval_runtime": 4.5852,
87
+ "eval_samples_per_second": 218.095,
88
+ "eval_steps_per_second": 13.74,
89
+ "step": 400
90
+ },
91
+ {
92
+ "epoch": 0.08,
93
+ "grad_norm": 25.50597381591797,
94
+ "learning_rate": 3.944e-05,
95
+ "loss": 1.0611,
96
+ "step": 500
97
+ },
98
+ {
99
+ "epoch": 0.08,
100
+ "eval_all-nli-dev_cosine_accuracy": 0.814,
101
+ "eval_all-nli-dev_dot_accuracy": 0.216,
102
+ "eval_all-nli-dev_euclidean_accuracy": 0.804,
103
+ "eval_all-nli-dev_manhattan_accuracy": 0.847,
104
+ "eval_all-nli-dev_max_accuracy": 0.847,
105
+ "eval_loss": 1.4609754085540771,
106
+ "eval_runtime": 4.6833,
107
+ "eval_samples_per_second": 213.524,
108
+ "eval_steps_per_second": 13.452,
109
+ "step": 500
110
+ },
111
+ {
112
+ "epoch": 0.096,
113
+ "grad_norm": 55.69437026977539,
114
+ "learning_rate": 4.744e-05,
115
+ "loss": 1.1424,
116
+ "step": 600
117
+ },
118
+ {
119
+ "epoch": 0.096,
120
+ "eval_all-nli-dev_cosine_accuracy": 0.776,
121
+ "eval_all-nli-dev_dot_accuracy": 0.319,
122
+ "eval_all-nli-dev_euclidean_accuracy": 0.786,
123
+ "eval_all-nli-dev_manhattan_accuracy": 0.805,
124
+ "eval_all-nli-dev_max_accuracy": 0.805,
125
+ "eval_loss": 1.7394046783447266,
126
+ "eval_runtime": 4.6079,
127
+ "eval_samples_per_second": 217.017,
128
+ "eval_steps_per_second": 13.672,
129
+ "step": 600
130
+ },
131
+ {
132
+ "epoch": 0.112,
133
+ "grad_norm": 24.330310821533203,
134
+ "learning_rate": 4.9404444444444447e-05,
135
+ "loss": 1.3545,
136
+ "step": 700
137
+ },
138
+ {
139
+ "epoch": 0.112,
140
+ "eval_all-nli-dev_cosine_accuracy": 0.825,
141
+ "eval_all-nli-dev_dot_accuracy": 0.211,
142
+ "eval_all-nli-dev_euclidean_accuracy": 0.825,
143
+ "eval_all-nli-dev_manhattan_accuracy": 0.83,
144
+ "eval_all-nli-dev_max_accuracy": 0.83,
145
+ "eval_loss": 1.417900562286377,
146
+ "eval_runtime": 4.6918,
147
+ "eval_samples_per_second": 213.136,
148
+ "eval_steps_per_second": 13.428,
149
+ "step": 700
150
+ },
151
+ {
152
+ "epoch": 0.128,
153
+ "grad_norm": 18.1214599609375,
154
+ "learning_rate": 4.852444444444444e-05,
155
+ "loss": 1.3587,
156
+ "step": 800
157
+ },
158
+ {
159
+ "epoch": 0.128,
160
+ "eval_all-nli-dev_cosine_accuracy": 0.834,
161
+ "eval_all-nli-dev_dot_accuracy": 0.175,
162
+ "eval_all-nli-dev_euclidean_accuracy": 0.832,
163
+ "eval_all-nli-dev_manhattan_accuracy": 0.84,
164
+ "eval_all-nli-dev_max_accuracy": 0.84,
165
+ "eval_loss": 1.6350008249282837,
166
+ "eval_runtime": 4.57,
167
+ "eval_samples_per_second": 218.818,
168
+ "eval_steps_per_second": 13.786,
169
+ "step": 800
170
+ },
171
+ {
172
+ "epoch": 0.144,
173
+ "grad_norm": 28.469261169433594,
174
+ "learning_rate": 4.763555555555555e-05,
175
+ "loss": 1.237,
176
+ "step": 900
177
+ },
178
+ {
179
+ "epoch": 0.144,
180
+ "eval_all-nli-dev_cosine_accuracy": 0.778,
181
+ "eval_all-nli-dev_dot_accuracy": 0.235,
182
+ "eval_all-nli-dev_euclidean_accuracy": 0.778,
183
+ "eval_all-nli-dev_manhattan_accuracy": 0.801,
184
+ "eval_all-nli-dev_max_accuracy": 0.801,
185
+ "eval_loss": 1.6793839931488037,
186
+ "eval_runtime": 4.5941,
187
+ "eval_samples_per_second": 217.673,
188
+ "eval_steps_per_second": 13.713,
189
+ "step": 900
190
+ },
191
+ {
192
+ "epoch": 0.16,
193
+ "grad_norm": 33.614253997802734,
194
+ "learning_rate": 4.6746666666666664e-05,
195
+ "loss": 1.2029,
196
+ "step": 1000
197
+ },
198
+ {
199
+ "epoch": 0.16,
200
+ "eval_all-nli-dev_cosine_accuracy": 0.799,
201
+ "eval_all-nli-dev_dot_accuracy": 0.24,
202
+ "eval_all-nli-dev_euclidean_accuracy": 0.808,
203
+ "eval_all-nli-dev_manhattan_accuracy": 0.811,
204
+ "eval_all-nli-dev_max_accuracy": 0.811,
205
+ "eval_loss": 1.673274040222168,
206
+ "eval_runtime": 4.6683,
207
+ "eval_samples_per_second": 214.212,
208
+ "eval_steps_per_second": 13.495,
209
+ "step": 1000
210
+ },
211
+ {
212
+ "epoch": 0.176,
213
+ "grad_norm": 26.691509246826172,
214
+ "learning_rate": 4.5857777777777775e-05,
215
+ "loss": 1.2748,
216
+ "step": 1100
217
+ },
218
+ {
219
+ "epoch": 0.176,
220
+ "eval_all-nli-dev_cosine_accuracy": 0.8,
221
+ "eval_all-nli-dev_dot_accuracy": 0.213,
222
+ "eval_all-nli-dev_euclidean_accuracy": 0.802,
223
+ "eval_all-nli-dev_manhattan_accuracy": 0.818,
224
+ "eval_all-nli-dev_max_accuracy": 0.818,
225
+ "eval_loss": 1.6359915733337402,
226
+ "eval_runtime": 4.6977,
227
+ "eval_samples_per_second": 212.869,
228
+ "eval_steps_per_second": 13.411,
229
+ "step": 1100
230
+ },
231
+ {
232
+ "epoch": 0.192,
233
+ "grad_norm": 23.69953727722168,
234
+ "learning_rate": 4.4968888888888894e-05,
235
+ "loss": 1.1433,
236
+ "step": 1200
237
+ },
238
+ {
239
+ "epoch": 0.192,
240
+ "eval_all-nli-dev_cosine_accuracy": 0.786,
241
+ "eval_all-nli-dev_dot_accuracy": 0.215,
242
+ "eval_all-nli-dev_euclidean_accuracy": 0.785,
243
+ "eval_all-nli-dev_manhattan_accuracy": 0.806,
244
+ "eval_all-nli-dev_max_accuracy": 0.806,
245
+ "eval_loss": 1.7951678037643433,
246
+ "eval_runtime": 4.6338,
247
+ "eval_samples_per_second": 215.807,
248
+ "eval_steps_per_second": 13.596,
249
+ "step": 1200
250
+ },
251
+ {
252
+ "epoch": 0.208,
253
+ "grad_norm": 17.910472869873047,
254
+ "learning_rate": 4.4080000000000005e-05,
255
+ "loss": 1.0113,
256
+ "step": 1300
257
+ },
258
+ {
259
+ "epoch": 0.208,
260
+ "eval_all-nli-dev_cosine_accuracy": 0.817,
261
+ "eval_all-nli-dev_dot_accuracy": 0.178,
262
+ "eval_all-nli-dev_euclidean_accuracy": 0.815,
263
+ "eval_all-nli-dev_manhattan_accuracy": 0.817,
264
+ "eval_all-nli-dev_max_accuracy": 0.817,
265
+ "eval_loss": 1.4315475225448608,
266
+ "eval_runtime": 4.6753,
267
+ "eval_samples_per_second": 213.892,
268
+ "eval_steps_per_second": 13.475,
269
+ "step": 1300
270
+ },
271
+ {
272
+ "epoch": 0.224,
273
+ "grad_norm": 43.645694732666016,
274
+ "learning_rate": 4.3191111111111116e-05,
275
+ "loss": 0.8216,
276
+ "step": 1400
277
+ },
278
+ {
279
+ "epoch": 0.224,
280
+ "eval_all-nli-dev_cosine_accuracy": 0.771,
281
+ "eval_all-nli-dev_dot_accuracy": 0.243,
282
+ "eval_all-nli-dev_euclidean_accuracy": 0.776,
283
+ "eval_all-nli-dev_manhattan_accuracy": 0.774,
284
+ "eval_all-nli-dev_max_accuracy": 0.776,
285
+ "eval_loss": 1.6300010681152344,
286
+ "eval_runtime": 4.6418,
287
+ "eval_samples_per_second": 215.435,
288
+ "eval_steps_per_second": 13.572,
289
+ "step": 1400
290
+ },
291
+ {
292
+ "epoch": 0.24,
293
+ "grad_norm": 31.21487045288086,
294
+ "learning_rate": 4.231111111111111e-05,
295
+ "loss": 1.3451,
296
+ "step": 1500
297
+ },
298
+ {
299
+ "epoch": 0.24,
300
+ "eval_all-nli-dev_cosine_accuracy": 0.845,
301
+ "eval_all-nli-dev_dot_accuracy": 0.186,
302
+ "eval_all-nli-dev_euclidean_accuracy": 0.85,
303
+ "eval_all-nli-dev_manhattan_accuracy": 0.856,
304
+ "eval_all-nli-dev_max_accuracy": 0.856,
305
+ "eval_loss": 1.1566354036331177,
306
+ "eval_runtime": 4.6716,
307
+ "eval_samples_per_second": 214.061,
308
+ "eval_steps_per_second": 13.486,
309
+ "step": 1500
310
+ },
311
+ {
312
+ "epoch": 0.256,
313
+ "grad_norm": 25.364757537841797,
314
+ "learning_rate": 4.142222222222222e-05,
315
+ "loss": 0.8745,
316
+ "step": 1600
317
+ },
318
+ {
319
+ "epoch": 0.256,
320
+ "eval_all-nli-dev_cosine_accuracy": 0.825,
321
+ "eval_all-nli-dev_dot_accuracy": 0.175,
322
+ "eval_all-nli-dev_euclidean_accuracy": 0.833,
323
+ "eval_all-nli-dev_manhattan_accuracy": 0.838,
324
+ "eval_all-nli-dev_max_accuracy": 0.838,
325
+ "eval_loss": 1.2074507474899292,
326
+ "eval_runtime": 4.7951,
327
+ "eval_samples_per_second": 208.546,
328
+ "eval_steps_per_second": 13.138,
329
+ "step": 1600
330
+ },
331
+ {
332
+ "epoch": 0.272,
333
+ "grad_norm": 16.138595581054688,
334
+ "learning_rate": 4.0533333333333334e-05,
335
+ "loss": 0.9945,
336
+ "step": 1700
337
+ },
338
+ {
339
+ "epoch": 0.272,
340
+ "eval_all-nli-dev_cosine_accuracy": 0.822,
341
+ "eval_all-nli-dev_dot_accuracy": 0.191,
342
+ "eval_all-nli-dev_euclidean_accuracy": 0.824,
343
+ "eval_all-nli-dev_manhattan_accuracy": 0.831,
344
+ "eval_all-nli-dev_max_accuracy": 0.831,
345
+ "eval_loss": 1.3295574188232422,
346
+ "eval_runtime": 4.7422,
347
+ "eval_samples_per_second": 210.873,
348
+ "eval_steps_per_second": 13.285,
349
+ "step": 1700
350
+ },
351
+ {
352
+ "epoch": 0.288,
353
+ "grad_norm": 21.44277572631836,
354
+ "learning_rate": 3.9644444444444445e-05,
355
+ "loss": 0.9827,
356
+ "step": 1800
357
+ },
358
+ {
359
+ "epoch": 0.288,
360
+ "eval_all-nli-dev_cosine_accuracy": 0.844,
361
+ "eval_all-nli-dev_dot_accuracy": 0.163,
362
+ "eval_all-nli-dev_euclidean_accuracy": 0.839,
363
+ "eval_all-nli-dev_manhattan_accuracy": 0.844,
364
+ "eval_all-nli-dev_max_accuracy": 0.844,
365
+ "eval_loss": 1.3051831722259521,
366
+ "eval_runtime": 4.6529,
367
+ "eval_samples_per_second": 214.919,
368
+ "eval_steps_per_second": 13.54,
369
+ "step": 1800
370
+ },
371
+ {
372
+ "epoch": 0.304,
373
+ "grad_norm": 25.058795928955078,
374
+ "learning_rate": 3.8755555555555556e-05,
375
+ "loss": 0.974,
376
+ "step": 1900
377
+ },
378
+ {
379
+ "epoch": 0.304,
380
+ "eval_all-nli-dev_cosine_accuracy": 0.837,
381
+ "eval_all-nli-dev_dot_accuracy": 0.161,
382
+ "eval_all-nli-dev_euclidean_accuracy": 0.838,
383
+ "eval_all-nli-dev_manhattan_accuracy": 0.85,
384
+ "eval_all-nli-dev_max_accuracy": 0.85,
385
+ "eval_loss": 1.164267897605896,
386
+ "eval_runtime": 4.6376,
387
+ "eval_samples_per_second": 215.626,
388
+ "eval_steps_per_second": 13.584,
389
+ "step": 1900
390
+ },
391
+ {
392
+ "epoch": 0.32,
393
+ "grad_norm": 17.524301528930664,
394
+ "learning_rate": 3.786666666666667e-05,
395
+ "loss": 0.7555,
396
+ "step": 2000
397
+ },
398
+ {
399
+ "epoch": 0.32,
400
+ "eval_all-nli-dev_cosine_accuracy": 0.855,
401
+ "eval_all-nli-dev_dot_accuracy": 0.147,
402
+ "eval_all-nli-dev_euclidean_accuracy": 0.856,
403
+ "eval_all-nli-dev_manhattan_accuracy": 0.869,
404
+ "eval_all-nli-dev_max_accuracy": 0.869,
405
+ "eval_loss": 1.2737869024276733,
406
+ "eval_runtime": 4.6503,
407
+ "eval_samples_per_second": 215.038,
408
+ "eval_steps_per_second": 13.547,
409
+ "step": 2000
410
+ },
411
+ {
412
+ "epoch": 0.336,
413
+ "grad_norm": 10.828136444091797,
414
+ "learning_rate": 3.697777777777778e-05,
415
+ "loss": 0.7176,
416
+ "step": 2100
417
+ },
418
+ {
419
+ "epoch": 0.336,
420
+ "eval_all-nli-dev_cosine_accuracy": 0.832,
421
+ "eval_all-nli-dev_dot_accuracy": 0.183,
422
+ "eval_all-nli-dev_euclidean_accuracy": 0.832,
423
+ "eval_all-nli-dev_manhattan_accuracy": 0.829,
424
+ "eval_all-nli-dev_max_accuracy": 0.832,
425
+ "eval_loss": 1.374898910522461,
426
+ "eval_runtime": 4.6209,
427
+ "eval_samples_per_second": 216.408,
428
+ "eval_steps_per_second": 13.634,
429
+ "step": 2100
430
+ },
431
+ {
432
+ "epoch": 0.352,
433
+ "grad_norm": 11.03420639038086,
434
+ "learning_rate": 3.608888888888889e-05,
435
+ "loss": 0.834,
436
+ "step": 2200
437
+ },
438
+ {
439
+ "epoch": 0.352,
440
+ "eval_all-nli-dev_cosine_accuracy": 0.875,
441
+ "eval_all-nli-dev_dot_accuracy": 0.147,
442
+ "eval_all-nli-dev_euclidean_accuracy": 0.879,
443
+ "eval_all-nli-dev_manhattan_accuracy": 0.874,
444
+ "eval_all-nli-dev_max_accuracy": 0.879,
445
+ "eval_loss": 1.071208119392395,
446
+ "eval_runtime": 4.6829,
447
+ "eval_samples_per_second": 213.542,
448
+ "eval_steps_per_second": 13.453,
449
+ "step": 2200
450
+ },
451
+ {
452
+ "epoch": 0.368,
453
+ "grad_norm": 15.635822296142578,
454
+ "learning_rate": 3.52e-05,
455
+ "loss": 1.0819,
456
+ "step": 2300
457
+ },
458
+ {
459
+ "epoch": 0.368,
460
+ "eval_all-nli-dev_cosine_accuracy": 0.849,
461
+ "eval_all-nli-dev_dot_accuracy": 0.162,
462
+ "eval_all-nli-dev_euclidean_accuracy": 0.849,
463
+ "eval_all-nli-dev_manhattan_accuracy": 0.848,
464
+ "eval_all-nli-dev_max_accuracy": 0.849,
465
+ "eval_loss": 1.27626633644104,
466
+ "eval_runtime": 4.5515,
467
+ "eval_samples_per_second": 219.707,
468
+ "eval_steps_per_second": 13.842,
469
+ "step": 2300
470
+ },
471
+ {
472
+ "epoch": 0.384,
473
+ "grad_norm": 15.611441612243652,
474
+ "learning_rate": 3.431111111111111e-05,
475
+ "loss": 0.9515,
476
+ "step": 2400
477
+ },
478
+ {
479
+ "epoch": 0.384,
480
+ "eval_all-nli-dev_cosine_accuracy": 0.845,
481
+ "eval_all-nli-dev_dot_accuracy": 0.153,
482
+ "eval_all-nli-dev_euclidean_accuracy": 0.847,
483
+ "eval_all-nli-dev_manhattan_accuracy": 0.848,
484
+ "eval_all-nli-dev_max_accuracy": 0.848,
485
+ "eval_loss": 1.1383966207504272,
486
+ "eval_runtime": 4.5335,
487
+ "eval_samples_per_second": 220.582,
488
+ "eval_steps_per_second": 13.897,
489
+ "step": 2400
490
+ },
491
+ {
492
+ "epoch": 0.4,
493
+ "grad_norm": 23.901636123657227,
494
+ "learning_rate": 3.3422222222222224e-05,
495
+ "loss": 0.7828,
496
+ "step": 2500
497
+ },
498
+ {
499
+ "epoch": 0.4,
500
+ "eval_all-nli-dev_cosine_accuracy": 0.859,
501
+ "eval_all-nli-dev_dot_accuracy": 0.142,
502
+ "eval_all-nli-dev_euclidean_accuracy": 0.861,
503
+ "eval_all-nli-dev_manhattan_accuracy": 0.861,
504
+ "eval_all-nli-dev_max_accuracy": 0.861,
505
+ "eval_loss": 1.0878574848175049,
506
+ "eval_runtime": 4.6563,
507
+ "eval_samples_per_second": 214.765,
508
+ "eval_steps_per_second": 13.53,
509
+ "step": 2500
510
+ },
511
+ {
512
+ "epoch": 0.416,
513
+ "grad_norm": 20.29927635192871,
514
+ "learning_rate": 3.253333333333333e-05,
515
+ "loss": 0.7268,
516
+ "step": 2600
517
+ },
518
+ {
519
+ "epoch": 0.416,
520
+ "eval_all-nli-dev_cosine_accuracy": 0.868,
521
+ "eval_all-nli-dev_dot_accuracy": 0.128,
522
+ "eval_all-nli-dev_euclidean_accuracy": 0.864,
523
+ "eval_all-nli-dev_manhattan_accuracy": 0.867,
524
+ "eval_all-nli-dev_max_accuracy": 0.868,
525
+ "eval_loss": 0.9835022687911987,
526
+ "eval_runtime": 4.6005,
527
+ "eval_samples_per_second": 217.367,
528
+ "eval_steps_per_second": 13.694,
529
+ "step": 2600
530
+ },
531
+ {
532
+ "epoch": 0.432,
533
+ "grad_norm": 39.60092544555664,
534
+ "learning_rate": 3.164444444444444e-05,
535
+ "loss": 0.9228,
536
+ "step": 2700
537
+ },
538
+ {
539
+ "epoch": 0.432,
540
+ "eval_all-nli-dev_cosine_accuracy": 0.851,
541
+ "eval_all-nli-dev_dot_accuracy": 0.15,
542
+ "eval_all-nli-dev_euclidean_accuracy": 0.848,
543
+ "eval_all-nli-dev_manhattan_accuracy": 0.848,
544
+ "eval_all-nli-dev_max_accuracy": 0.851,
545
+ "eval_loss": 1.1840057373046875,
546
+ "eval_runtime": 4.6302,
547
+ "eval_samples_per_second": 215.972,
548
+ "eval_steps_per_second": 13.606,
549
+ "step": 2700
550
+ },
551
+ {
552
+ "epoch": 0.448,
553
+ "grad_norm": 26.71760368347168,
554
+ "learning_rate": 3.075555555555556e-05,
555
+ "loss": 1.0017,
556
+ "step": 2800
557
+ },
558
+ {
559
+ "epoch": 0.448,
560
+ "eval_all-nli-dev_cosine_accuracy": 0.85,
561
+ "eval_all-nli-dev_dot_accuracy": 0.138,
562
+ "eval_all-nli-dev_euclidean_accuracy": 0.846,
563
+ "eval_all-nli-dev_manhattan_accuracy": 0.853,
564
+ "eval_all-nli-dev_max_accuracy": 0.853,
565
+ "eval_loss": 1.1967850923538208,
566
+ "eval_runtime": 4.6908,
567
+ "eval_samples_per_second": 213.184,
568
+ "eval_steps_per_second": 13.431,
569
+ "step": 2800
570
+ },
571
+ {
572
+ "epoch": 0.464,
573
+ "grad_norm": 25.688671112060547,
574
+ "learning_rate": 2.986666666666667e-05,
575
+ "loss": 0.9138,
576
+ "step": 2900
577
+ },
578
+ {
579
+ "epoch": 0.464,
580
+ "eval_all-nli-dev_cosine_accuracy": 0.861,
581
+ "eval_all-nli-dev_dot_accuracy": 0.14,
582
+ "eval_all-nli-dev_euclidean_accuracy": 0.86,
583
+ "eval_all-nli-dev_manhattan_accuracy": 0.869,
584
+ "eval_all-nli-dev_max_accuracy": 0.869,
585
+ "eval_loss": 0.9930791854858398,
586
+ "eval_runtime": 4.7105,
587
+ "eval_samples_per_second": 212.29,
588
+ "eval_steps_per_second": 13.374,
589
+ "step": 2900
590
+ },
591
+ {
592
+ "epoch": 0.48,
593
+ "grad_norm": 13.824788093566895,
594
+ "learning_rate": 2.897777777777778e-05,
595
+ "loss": 0.8498,
596
+ "step": 3000
597
+ },
598
+ {
599
+ "epoch": 0.48,
600
+ "eval_all-nli-dev_cosine_accuracy": 0.872,
601
+ "eval_all-nli-dev_dot_accuracy": 0.129,
602
+ "eval_all-nli-dev_euclidean_accuracy": 0.871,
603
+ "eval_all-nli-dev_manhattan_accuracy": 0.876,
604
+ "eval_all-nli-dev_max_accuracy": 0.876,
605
+ "eval_loss": 0.9925669431686401,
606
+ "eval_runtime": 4.67,
607
+ "eval_samples_per_second": 214.134,
608
+ "eval_steps_per_second": 13.49,
609
+ "step": 3000
610
+ },
611
+ {
612
+ "epoch": 0.496,
613
+ "grad_norm": 24.699886322021484,
614
+ "learning_rate": 2.8088888888888893e-05,
615
+ "loss": 0.9682,
616
+ "step": 3100
617
+ },
618
+ {
619
+ "epoch": 0.496,
620
+ "eval_all-nli-dev_cosine_accuracy": 0.863,
621
+ "eval_all-nli-dev_dot_accuracy": 0.132,
622
+ "eval_all-nli-dev_euclidean_accuracy": 0.86,
623
+ "eval_all-nli-dev_manhattan_accuracy": 0.866,
624
+ "eval_all-nli-dev_max_accuracy": 0.866,
625
+ "eval_loss": 1.0003857612609863,
626
+ "eval_runtime": 4.6701,
627
+ "eval_samples_per_second": 214.128,
628
+ "eval_steps_per_second": 13.49,
629
+ "step": 3100
630
+ },
631
+ {
632
+ "epoch": 0.512,
633
+ "grad_norm": 33.25304412841797,
634
+ "learning_rate": 2.7200000000000004e-05,
635
+ "loss": 0.7227,
636
+ "step": 3200
637
+ },
638
+ {
639
+ "epoch": 0.512,
640
+ "eval_all-nli-dev_cosine_accuracy": 0.882,
641
+ "eval_all-nli-dev_dot_accuracy": 0.118,
642
+ "eval_all-nli-dev_euclidean_accuracy": 0.883,
643
+ "eval_all-nli-dev_manhattan_accuracy": 0.88,
644
+ "eval_all-nli-dev_max_accuracy": 0.883,
645
+ "eval_loss": 0.8489543199539185,
646
+ "eval_runtime": 4.5888,
647
+ "eval_samples_per_second": 217.92,
648
+ "eval_steps_per_second": 13.729,
649
+ "step": 3200
650
+ },
651
+ {
652
+ "epoch": 0.528,
653
+ "grad_norm": 12.450774192810059,
654
+ "learning_rate": 2.6311111111111115e-05,
655
+ "loss": 0.7134,
656
+ "step": 3300
657
+ },
658
+ {
659
+ "epoch": 0.528,
660
+ "eval_all-nli-dev_cosine_accuracy": 0.882,
661
+ "eval_all-nli-dev_dot_accuracy": 0.121,
662
+ "eval_all-nli-dev_euclidean_accuracy": 0.877,
663
+ "eval_all-nli-dev_manhattan_accuracy": 0.884,
664
+ "eval_all-nli-dev_max_accuracy": 0.884,
665
+ "eval_loss": 0.8214895725250244,
666
+ "eval_runtime": 4.6881,
667
+ "eval_samples_per_second": 213.307,
668
+ "eval_steps_per_second": 13.438,
669
+ "step": 3300
670
+ },
671
+ {
672
+ "epoch": 0.544,
673
+ "grad_norm": 13.840750694274902,
674
+ "learning_rate": 2.5422222222222227e-05,
675
+ "loss": 0.6645,
676
+ "step": 3400
677
+ },
678
+ {
679
+ "epoch": 0.544,
680
+ "eval_all-nli-dev_cosine_accuracy": 0.873,
681
+ "eval_all-nli-dev_dot_accuracy": 0.136,
682
+ "eval_all-nli-dev_euclidean_accuracy": 0.874,
683
+ "eval_all-nli-dev_manhattan_accuracy": 0.877,
684
+ "eval_all-nli-dev_max_accuracy": 0.877,
685
+ "eval_loss": 0.8888874053955078,
686
+ "eval_runtime": 4.6792,
687
+ "eval_samples_per_second": 213.711,
688
+ "eval_steps_per_second": 13.464,
689
+ "step": 3400
690
+ },
691
+ {
692
+ "epoch": 0.56,
693
+ "grad_norm": 9.944676399230957,
694
+ "learning_rate": 2.4533333333333334e-05,
695
+ "loss": 0.7073,
696
+ "step": 3500
697
+ },
698
+ {
699
+ "epoch": 0.56,
700
+ "eval_all-nli-dev_cosine_accuracy": 0.884,
701
+ "eval_all-nli-dev_dot_accuracy": 0.108,
702
+ "eval_all-nli-dev_euclidean_accuracy": 0.884,
703
+ "eval_all-nli-dev_manhattan_accuracy": 0.888,
704
+ "eval_all-nli-dev_max_accuracy": 0.888,
705
+ "eval_loss": 0.8373873829841614,
706
+ "eval_runtime": 4.6888,
707
+ "eval_samples_per_second": 213.273,
708
+ "eval_steps_per_second": 13.436,
709
+ "step": 3500
710
+ },
711
+ {
712
+ "epoch": 0.576,
713
+ "grad_norm": 23.035810470581055,
714
+ "learning_rate": 2.3644444444444446e-05,
715
+ "loss": 0.6679,
716
+ "step": 3600
717
+ },
718
+ {
719
+ "epoch": 0.576,
720
+ "eval_all-nli-dev_cosine_accuracy": 0.905,
721
+ "eval_all-nli-dev_dot_accuracy": 0.094,
722
+ "eval_all-nli-dev_euclidean_accuracy": 0.903,
723
+ "eval_all-nli-dev_manhattan_accuracy": 0.911,
724
+ "eval_all-nli-dev_max_accuracy": 0.911,
725
+ "eval_loss": 0.7780482172966003,
726
+ "eval_runtime": 4.6847,
727
+ "eval_samples_per_second": 213.461,
728
+ "eval_steps_per_second": 13.448,
729
+ "step": 3600
730
+ },
731
+ {
732
+ "epoch": 0.592,
733
+ "grad_norm": 12.241792678833008,
734
+ "learning_rate": 2.2755555555555557e-05,
735
+ "loss": 0.6609,
736
+ "step": 3700
737
+ },
738
+ {
739
+ "epoch": 0.592,
740
+ "eval_all-nli-dev_cosine_accuracy": 0.893,
741
+ "eval_all-nli-dev_dot_accuracy": 0.102,
742
+ "eval_all-nli-dev_euclidean_accuracy": 0.893,
743
+ "eval_all-nli-dev_manhattan_accuracy": 0.896,
744
+ "eval_all-nli-dev_max_accuracy": 0.896,
745
+ "eval_loss": 0.812877357006073,
746
+ "eval_runtime": 4.685,
747
+ "eval_samples_per_second": 213.449,
748
+ "eval_steps_per_second": 13.447,
749
+ "step": 3700
750
+ },
751
+ {
752
+ "epoch": 0.608,
753
+ "grad_norm": 23.00703239440918,
754
+ "learning_rate": 2.186666666666667e-05,
755
+ "loss": 0.687,
756
+ "step": 3800
757
+ },
758
+ {
759
+ "epoch": 0.608,
760
+ "eval_all-nli-dev_cosine_accuracy": 0.913,
761
+ "eval_all-nli-dev_dot_accuracy": 0.085,
762
+ "eval_all-nli-dev_euclidean_accuracy": 0.905,
763
+ "eval_all-nli-dev_manhattan_accuracy": 0.905,
764
+ "eval_all-nli-dev_max_accuracy": 0.913,
765
+ "eval_loss": 0.7215772271156311,
766
+ "eval_runtime": 4.6566,
767
+ "eval_samples_per_second": 214.751,
768
+ "eval_steps_per_second": 13.529,
769
+ "step": 3800
770
+ },
771
+ {
772
+ "epoch": 0.624,
773
+ "grad_norm": 13.749407768249512,
774
+ "learning_rate": 2.097777777777778e-05,
775
+ "loss": 0.5725,
776
+ "step": 3900
777
+ },
778
+ {
779
+ "epoch": 0.624,
780
+ "eval_all-nli-dev_cosine_accuracy": 0.912,
781
+ "eval_all-nli-dev_dot_accuracy": 0.09,
782
+ "eval_all-nli-dev_euclidean_accuracy": 0.908,
783
+ "eval_all-nli-dev_manhattan_accuracy": 0.92,
784
+ "eval_all-nli-dev_max_accuracy": 0.92,
785
+ "eval_loss": 0.7618492841720581,
786
+ "eval_runtime": 4.6929,
787
+ "eval_samples_per_second": 213.087,
788
+ "eval_steps_per_second": 13.424,
789
+ "step": 3900
790
+ },
791
+ {
792
+ "epoch": 0.64,
793
+ "grad_norm": 14.7637300491333,
794
+ "learning_rate": 2.008888888888889e-05,
795
+ "loss": 0.87,
796
+ "step": 4000
797
+ },
798
+ {
799
+ "epoch": 0.64,
800
+ "eval_all-nli-dev_cosine_accuracy": 0.909,
801
+ "eval_all-nli-dev_dot_accuracy": 0.086,
802
+ "eval_all-nli-dev_euclidean_accuracy": 0.909,
803
+ "eval_all-nli-dev_manhattan_accuracy": 0.909,
804
+ "eval_all-nli-dev_max_accuracy": 0.909,
805
+ "eval_loss": 0.706980288028717,
806
+ "eval_runtime": 4.6894,
807
+ "eval_samples_per_second": 213.247,
808
+ "eval_steps_per_second": 13.435,
809
+ "step": 4000
810
+ },
811
+ {
812
+ "epoch": 0.656,
813
+ "grad_norm": 16.75938606262207,
814
+ "learning_rate": 1.9200000000000003e-05,
815
+ "loss": 1.0892,
816
+ "step": 4100
817
+ },
818
+ {
819
+ "epoch": 0.656,
820
+ "eval_all-nli-dev_cosine_accuracy": 0.901,
821
+ "eval_all-nli-dev_dot_accuracy": 0.094,
822
+ "eval_all-nli-dev_euclidean_accuracy": 0.897,
823
+ "eval_all-nli-dev_manhattan_accuracy": 0.899,
824
+ "eval_all-nli-dev_max_accuracy": 0.901,
825
+ "eval_loss": 0.7424288392066956,
826
+ "eval_runtime": 4.6286,
827
+ "eval_samples_per_second": 216.046,
828
+ "eval_steps_per_second": 13.611,
829
+ "step": 4100
830
+ },
831
+ {
832
+ "epoch": 0.672,
833
+ "grad_norm": 17.46446418762207,
834
+ "learning_rate": 1.8311111111111114e-05,
835
+ "loss": 1.048,
836
+ "step": 4200
837
+ },
838
+ {
839
+ "epoch": 0.672,
840
+ "eval_all-nli-dev_cosine_accuracy": 0.908,
841
+ "eval_all-nli-dev_dot_accuracy": 0.093,
842
+ "eval_all-nli-dev_euclidean_accuracy": 0.908,
843
+ "eval_all-nli-dev_manhattan_accuracy": 0.909,
844
+ "eval_all-nli-dev_max_accuracy": 0.909,
845
+ "eval_loss": 0.6750496029853821,
846
+ "eval_runtime": 4.641,
847
+ "eval_samples_per_second": 215.47,
848
+ "eval_steps_per_second": 13.575,
849
+ "step": 4200
850
+ },
851
+ {
852
+ "epoch": 0.688,
853
+ "grad_norm": 18.15054702758789,
854
+ "learning_rate": 1.7422222222222222e-05,
855
+ "loss": 0.8571,
856
+ "step": 4300
857
+ },
858
+ {
859
+ "epoch": 0.688,
860
+ "eval_all-nli-dev_cosine_accuracy": 0.903,
861
+ "eval_all-nli-dev_dot_accuracy": 0.095,
862
+ "eval_all-nli-dev_euclidean_accuracy": 0.901,
863
+ "eval_all-nli-dev_manhattan_accuracy": 0.902,
864
+ "eval_all-nli-dev_max_accuracy": 0.903,
865
+ "eval_loss": 0.6474354863166809,
866
+ "eval_runtime": 4.7822,
867
+ "eval_samples_per_second": 209.111,
868
+ "eval_steps_per_second": 13.174,
869
+ "step": 4300
870
+ },
871
+ {
872
+ "epoch": 0.704,
873
+ "grad_norm": 15.00839614868164,
874
+ "learning_rate": 1.6533333333333333e-05,
875
+ "loss": 0.7945,
876
+ "step": 4400
877
+ },
878
+ {
879
+ "epoch": 0.704,
880
+ "eval_all-nli-dev_cosine_accuracy": 0.908,
881
+ "eval_all-nli-dev_dot_accuracy": 0.089,
882
+ "eval_all-nli-dev_euclidean_accuracy": 0.91,
883
+ "eval_all-nli-dev_manhattan_accuracy": 0.911,
884
+ "eval_all-nli-dev_max_accuracy": 0.911,
885
+ "eval_loss": 0.6094924211502075,
886
+ "eval_runtime": 4.6578,
887
+ "eval_samples_per_second": 214.695,
888
+ "eval_steps_per_second": 13.526,
889
+ "step": 4400
890
+ },
891
+ {
892
+ "epoch": 0.72,
893
+ "grad_norm": 24.833444595336914,
894
+ "learning_rate": 1.5644444444444444e-05,
895
+ "loss": 0.6717,
896
+ "step": 4500
897
+ },
898
+ {
899
+ "epoch": 0.72,
900
+ "eval_all-nli-dev_cosine_accuracy": 0.93,
901
+ "eval_all-nli-dev_dot_accuracy": 0.066,
902
+ "eval_all-nli-dev_euclidean_accuracy": 0.923,
903
+ "eval_all-nli-dev_manhattan_accuracy": 0.921,
904
+ "eval_all-nli-dev_max_accuracy": 0.93,
905
+ "eval_loss": 0.5663518309593201,
906
+ "eval_runtime": 4.7483,
907
+ "eval_samples_per_second": 210.6,
908
+ "eval_steps_per_second": 13.268,
909
+ "step": 4500
910
+ },
911
+ {
912
+ "epoch": 0.736,
913
+ "grad_norm": 1504.730224609375,
914
+ "learning_rate": 1.4755555555555556e-05,
915
+ "loss": 0.8161,
916
+ "step": 4600
917
+ },
918
+ {
919
+ "epoch": 0.736,
920
+ "eval_all-nli-dev_cosine_accuracy": 0.919,
921
+ "eval_all-nli-dev_dot_accuracy": 0.07,
922
+ "eval_all-nli-dev_euclidean_accuracy": 0.916,
923
+ "eval_all-nli-dev_manhattan_accuracy": 0.918,
924
+ "eval_all-nli-dev_max_accuracy": 0.919,
925
+ "eval_loss": 0.5479408502578735,
926
+ "eval_runtime": 4.6248,
927
+ "eval_samples_per_second": 216.224,
928
+ "eval_steps_per_second": 13.622,
929
+ "step": 4600
930
+ },
931
+ {
932
+ "epoch": 0.752,
933
+ "grad_norm": 30.87934684753418,
934
+ "learning_rate": 1.3866666666666667e-05,
935
+ "loss": 0.7917,
936
+ "step": 4700
937
+ },
938
+ {
939
+ "epoch": 0.752,
940
+ "eval_all-nli-dev_cosine_accuracy": 0.911,
941
+ "eval_all-nli-dev_dot_accuracy": 0.083,
942
+ "eval_all-nli-dev_euclidean_accuracy": 0.909,
943
+ "eval_all-nli-dev_manhattan_accuracy": 0.907,
944
+ "eval_all-nli-dev_max_accuracy": 0.911,
945
+ "eval_loss": 0.6419683694839478,
946
+ "eval_runtime": 4.5916,
947
+ "eval_samples_per_second": 217.788,
948
+ "eval_steps_per_second": 13.721,
949
+ "step": 4700
950
+ },
951
+ {
952
+ "epoch": 0.768,
953
+ "grad_norm": 23.224735260009766,
954
+ "learning_rate": 1.2977777777777777e-05,
955
+ "loss": 0.7711,
956
+ "step": 4800
957
+ },
958
+ {
959
+ "epoch": 0.768,
960
+ "eval_all-nli-dev_cosine_accuracy": 0.916,
961
+ "eval_all-nli-dev_dot_accuracy": 0.078,
962
+ "eval_all-nli-dev_euclidean_accuracy": 0.914,
963
+ "eval_all-nli-dev_manhattan_accuracy": 0.913,
964
+ "eval_all-nli-dev_max_accuracy": 0.916,
965
+ "eval_loss": 0.5856308341026306,
966
+ "eval_runtime": 4.5755,
967
+ "eval_samples_per_second": 218.553,
968
+ "eval_steps_per_second": 13.769,
969
+ "step": 4800
970
+ },
971
+ {
972
+ "epoch": 0.784,
973
+ "grad_norm": 13.215950012207031,
974
+ "learning_rate": 1.208888888888889e-05,
975
+ "loss": 0.6441,
976
+ "step": 4900
977
+ },
978
+ {
979
+ "epoch": 0.784,
980
+ "eval_all-nli-dev_cosine_accuracy": 0.916,
981
+ "eval_all-nli-dev_dot_accuracy": 0.079,
982
+ "eval_all-nli-dev_euclidean_accuracy": 0.913,
983
+ "eval_all-nli-dev_manhattan_accuracy": 0.913,
984
+ "eval_all-nli-dev_max_accuracy": 0.916,
985
+ "eval_loss": 0.5775041580200195,
986
+ "eval_runtime": 4.5681,
987
+ "eval_samples_per_second": 218.91,
988
+ "eval_steps_per_second": 13.791,
989
+ "step": 4900
990
+ },
991
+ {
992
+ "epoch": 0.8,
993
+ "grad_norm": 18.222217559814453,
994
+ "learning_rate": 1.1200000000000001e-05,
995
+ "loss": 0.7766,
996
+ "step": 5000
997
+ },
998
+ {
999
+ "epoch": 0.8,
1000
+ "eval_all-nli-dev_cosine_accuracy": 0.922,
1001
+ "eval_all-nli-dev_dot_accuracy": 0.077,
1002
+ "eval_all-nli-dev_euclidean_accuracy": 0.92,
1003
+ "eval_all-nli-dev_manhattan_accuracy": 0.917,
1004
+ "eval_all-nli-dev_max_accuracy": 0.922,
1005
+ "eval_loss": 0.5785014629364014,
1006
+ "eval_runtime": 4.6158,
1007
+ "eval_samples_per_second": 216.645,
1008
+ "eval_steps_per_second": 13.649,
1009
+ "step": 5000
1010
+ },
1011
+ {
1012
+ "epoch": 0.816,
1013
+ "grad_norm": 10.330174446105957,
1014
+ "learning_rate": 1.031111111111111e-05,
1015
+ "loss": 0.6009,
1016
+ "step": 5100
1017
+ },
1018
+ {
1019
+ "epoch": 0.816,
1020
+ "eval_all-nli-dev_cosine_accuracy": 0.921,
1021
+ "eval_all-nli-dev_dot_accuracy": 0.081,
1022
+ "eval_all-nli-dev_euclidean_accuracy": 0.917,
1023
+ "eval_all-nli-dev_manhattan_accuracy": 0.919,
1024
+ "eval_all-nli-dev_max_accuracy": 0.921,
1025
+ "eval_loss": 0.5679826140403748,
1026
+ "eval_runtime": 4.5803,
1027
+ "eval_samples_per_second": 218.325,
1028
+ "eval_steps_per_second": 13.754,
1029
+ "step": 5100
1030
+ },
1031
+ {
1032
+ "epoch": 0.832,
1033
+ "grad_norm": 14.917418479919434,
1034
+ "learning_rate": 9.422222222222222e-06,
1035
+ "loss": 0.6711,
1036
+ "step": 5200
1037
+ },
1038
+ {
1039
+ "epoch": 0.832,
1040
+ "eval_all-nli-dev_cosine_accuracy": 0.921,
1041
+ "eval_all-nli-dev_dot_accuracy": 0.074,
1042
+ "eval_all-nli-dev_euclidean_accuracy": 0.917,
1043
+ "eval_all-nli-dev_manhattan_accuracy": 0.92,
1044
+ "eval_all-nli-dev_max_accuracy": 0.921,
1045
+ "eval_loss": 0.5487431883811951,
1046
+ "eval_runtime": 4.6796,
1047
+ "eval_samples_per_second": 213.694,
1048
+ "eval_steps_per_second": 13.463,
1049
+ "step": 5200
1050
+ },
1051
+ {
1052
+ "epoch": 0.848,
1053
+ "grad_norm": 32.70161056518555,
1054
+ "learning_rate": 8.533333333333334e-06,
1055
+ "loss": 0.618,
1056
+ "step": 5300
1057
+ },
1058
+ {
1059
+ "epoch": 0.848,
1060
+ "eval_all-nli-dev_cosine_accuracy": 0.926,
1061
+ "eval_all-nli-dev_dot_accuracy": 0.074,
1062
+ "eval_all-nli-dev_euclidean_accuracy": 0.921,
1063
+ "eval_all-nli-dev_manhattan_accuracy": 0.922,
1064
+ "eval_all-nli-dev_max_accuracy": 0.926,
1065
+ "eval_loss": 0.5450394749641418,
1066
+ "eval_runtime": 4.662,
1067
+ "eval_samples_per_second": 214.5,
1068
+ "eval_steps_per_second": 13.513,
1069
+ "step": 5300
1070
+ },
1071
+ {
1072
+ "epoch": 0.864,
1073
+ "grad_norm": 13.764747619628906,
1074
+ "learning_rate": 7.644444444444445e-06,
1075
+ "loss": 0.6702,
1076
+ "step": 5400
1077
+ },
1078
+ {
1079
+ "epoch": 0.864,
1080
+ "eval_all-nli-dev_cosine_accuracy": 0.926,
1081
+ "eval_all-nli-dev_dot_accuracy": 0.073,
1082
+ "eval_all-nli-dev_euclidean_accuracy": 0.921,
1083
+ "eval_all-nli-dev_manhattan_accuracy": 0.919,
1084
+ "eval_all-nli-dev_max_accuracy": 0.926,
1085
+ "eval_loss": 0.5497583150863647,
1086
+ "eval_runtime": 4.5535,
1087
+ "eval_samples_per_second": 219.613,
1088
+ "eval_steps_per_second": 13.836,
1089
+ "step": 5400
1090
+ },
1091
+ {
1092
+ "epoch": 0.88,
1093
+ "grad_norm": 29.501554489135742,
1094
+ "learning_rate": 6.755555555555555e-06,
1095
+ "loss": 0.7039,
1096
+ "step": 5500
1097
+ },
1098
+ {
1099
+ "epoch": 0.88,
1100
+ "eval_all-nli-dev_cosine_accuracy": 0.927,
1101
+ "eval_all-nli-dev_dot_accuracy": 0.07,
1102
+ "eval_all-nli-dev_euclidean_accuracy": 0.926,
1103
+ "eval_all-nli-dev_manhattan_accuracy": 0.922,
1104
+ "eval_all-nli-dev_max_accuracy": 0.927,
1105
+ "eval_loss": 0.5191856622695923,
1106
+ "eval_runtime": 4.5392,
1107
+ "eval_samples_per_second": 220.305,
1108
+ "eval_steps_per_second": 13.879,
1109
+ "step": 5500
1110
+ },
1111
+ {
1112
+ "epoch": 0.896,
1113
+ "grad_norm": 19.63087272644043,
1114
+ "learning_rate": 5.866666666666667e-06,
1115
+ "loss": 0.6114,
1116
+ "step": 5600
1117
+ },
1118
+ {
1119
+ "epoch": 0.896,
1120
+ "eval_all-nli-dev_cosine_accuracy": 0.932,
1121
+ "eval_all-nli-dev_dot_accuracy": 0.067,
1122
+ "eval_all-nli-dev_euclidean_accuracy": 0.931,
1123
+ "eval_all-nli-dev_manhattan_accuracy": 0.93,
1124
+ "eval_all-nli-dev_max_accuracy": 0.932,
1125
+ "eval_loss": 0.5045494437217712,
1126
+ "eval_runtime": 4.6367,
1127
+ "eval_samples_per_second": 215.672,
1128
+ "eval_steps_per_second": 13.587,
1129
+ "step": 5600
1130
+ },
1131
+ {
1132
+ "epoch": 0.912,
1133
+ "grad_norm": 57.868019104003906,
1134
+ "learning_rate": 4.977777777777778e-06,
1135
+ "loss": 0.7761,
1136
+ "step": 5700
1137
+ },
1138
+ {
1139
+ "epoch": 0.912,
1140
+ "eval_all-nli-dev_cosine_accuracy": 0.934,
1141
+ "eval_all-nli-dev_dot_accuracy": 0.061,
1142
+ "eval_all-nli-dev_euclidean_accuracy": 0.931,
1143
+ "eval_all-nli-dev_manhattan_accuracy": 0.928,
1144
+ "eval_all-nli-dev_max_accuracy": 0.934,
1145
+ "eval_loss": 0.5033252835273743,
1146
+ "eval_runtime": 4.6312,
1147
+ "eval_samples_per_second": 215.928,
1148
+ "eval_steps_per_second": 13.603,
1149
+ "step": 5700
1150
+ },
1151
+ {
1152
+ "epoch": 0.928,
1153
+ "grad_norm": 11.63007640838623,
1154
+ "learning_rate": 4.088888888888889e-06,
1155
+ "loss": 0.6248,
1156
+ "step": 5800
1157
+ },
1158
+ {
1159
+ "epoch": 0.928,
1160
+ "eval_all-nli-dev_cosine_accuracy": 0.932,
1161
+ "eval_all-nli-dev_dot_accuracy": 0.068,
1162
+ "eval_all-nli-dev_euclidean_accuracy": 0.926,
1163
+ "eval_all-nli-dev_manhattan_accuracy": 0.926,
1164
+ "eval_all-nli-dev_max_accuracy": 0.932,
1165
+ "eval_loss": 0.5013440251350403,
1166
+ "eval_runtime": 4.6162,
1167
+ "eval_samples_per_second": 216.629,
1168
+ "eval_steps_per_second": 13.648,
1169
+ "step": 5800
1170
+ },
1171
+ {
1172
+ "epoch": 0.944,
1173
+ "grad_norm": 16.12616539001465,
1174
+ "learning_rate": 3.2000000000000003e-06,
1175
+ "loss": 0.8359,
1176
+ "step": 5900
1177
+ },
1178
+ {
1179
+ "epoch": 0.944,
1180
+ "eval_all-nli-dev_cosine_accuracy": 0.93,
1181
+ "eval_all-nli-dev_dot_accuracy": 0.07,
1182
+ "eval_all-nli-dev_euclidean_accuracy": 0.926,
1183
+ "eval_all-nli-dev_manhattan_accuracy": 0.923,
1184
+ "eval_all-nli-dev_max_accuracy": 0.93,
1185
+ "eval_loss": 0.49764034152030945,
1186
+ "eval_runtime": 4.6817,
1187
+ "eval_samples_per_second": 213.6,
1188
+ "eval_steps_per_second": 13.457,
1189
+ "step": 5900
1190
+ },
1191
+ {
1192
+ "epoch": 0.96,
1193
+ "grad_norm": 16.06106185913086,
1194
+ "learning_rate": 2.311111111111111e-06,
1195
+ "loss": 0.8764,
1196
+ "step": 6000
1197
+ },
1198
+ {
1199
+ "epoch": 0.96,
1200
+ "eval_all-nli-dev_cosine_accuracy": 0.936,
1201
+ "eval_all-nli-dev_dot_accuracy": 0.062,
1202
+ "eval_all-nli-dev_euclidean_accuracy": 0.928,
1203
+ "eval_all-nli-dev_manhattan_accuracy": 0.928,
1204
+ "eval_all-nli-dev_max_accuracy": 0.936,
1205
+ "eval_loss": 0.49757900834083557,
1206
+ "eval_runtime": 4.6133,
1207
+ "eval_samples_per_second": 216.765,
1208
+ "eval_steps_per_second": 13.656,
1209
+ "step": 6000
1210
+ },
1211
+ {
1212
+ "epoch": 0.976,
1213
+ "grad_norm": 0.0003809410845860839,
1214
+ "learning_rate": 1.4222222222222223e-06,
1215
+ "loss": 0.763,
1216
+ "step": 6100
1217
+ },
1218
+ {
1219
+ "epoch": 0.976,
1220
+ "eval_all-nli-dev_cosine_accuracy": 0.935,
1221
+ "eval_all-nli-dev_dot_accuracy": 0.061,
1222
+ "eval_all-nli-dev_euclidean_accuracy": 0.93,
1223
+ "eval_all-nli-dev_manhattan_accuracy": 0.929,
1224
+ "eval_all-nli-dev_max_accuracy": 0.935,
1225
+ "eval_loss": 0.48454272747039795,
1226
+ "eval_runtime": 4.737,
1227
+ "eval_samples_per_second": 211.106,
1228
+ "eval_steps_per_second": 13.3,
1229
+ "step": 6100
1230
+ },
1231
+ {
1232
+ "epoch": 0.992,
1233
+ "grad_norm": 8.930841431720182e-06,
1234
+ "learning_rate": 5.333333333333333e-07,
1235
+ "loss": 0.0001,
1236
+ "step": 6200
1237
+ },
1238
+ {
1239
+ "epoch": 0.992,
1240
+ "eval_all-nli-dev_cosine_accuracy": 0.935,
1241
+ "eval_all-nli-dev_dot_accuracy": 0.062,
1242
+ "eval_all-nli-dev_euclidean_accuracy": 0.928,
1243
+ "eval_all-nli-dev_manhattan_accuracy": 0.929,
1244
+ "eval_all-nli-dev_max_accuracy": 0.935,
1245
+ "eval_loss": 0.48440054059028625,
1246
+ "eval_runtime": 4.5868,
1247
+ "eval_samples_per_second": 218.019,
1248
+ "eval_steps_per_second": 13.735,
1249
+ "step": 6200
1250
+ }
1251
+ ],
1252
+ "logging_steps": 100,
1253
+ "max_steps": 6250,
1254
+ "num_input_tokens_seen": 0,
1255
+ "num_train_epochs": 1,
1256
+ "save_steps": 100,
1257
+ "stateful_callbacks": {
1258
+ "TrainerControl": {
1259
+ "args": {
1260
+ "should_epoch_stop": false,
1261
+ "should_evaluate": false,
1262
+ "should_log": false,
1263
+ "should_save": true,
1264
+ "should_training_stop": false
1265
+ },
1266
+ "attributes": {}
1267
+ }
1268
+ },
1269
+ "total_flos": 0.0,
1270
+ "train_batch_size": 16,
1271
+ "trial_name": null,
1272
+ "trial_params": null
1273
+ }
checkpoint-6200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df7676b7e53f89034ceead350ac79887e4e5a23b5683d4e1a5f7514018af4ca6
3
+ size 5432
final/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
final/README.md ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:100K<n<1M
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: FacebookAI/xlm-roberta-base
12
+ metrics:
13
+ - cosine_accuracy
14
+ - dot_accuracy
15
+ - manhattan_accuracy
16
+ - euclidean_accuracy
17
+ - max_accuracy
18
+ widget:
19
+ - source_sentence: a baby smiling
20
+ sentences:
21
+ - The boy is smiling
22
+ - He is playing a song.
23
+ - A man is sleeping.
24
+ - source_sentence: an eagle flies
25
+ sentences:
26
+ - The person is amused.
27
+ - There is a land race.
28
+ - A man is sleeping.
29
+ - source_sentence: There's a dock
30
+ sentences:
31
+ - a person outside
32
+ - The biker is a human.
33
+ - A man is sleeping.
34
+ - source_sentence: A woman sings.
35
+ sentences:
36
+ - The woman is singing.
37
+ - Girls dance together.
38
+ - A man playing ice hockey.
39
+ - source_sentence: The boy scowls
40
+ sentences:
41
+ - The boy is outside.
42
+ - The person is inside.
43
+ - two men stand alone
44
+ pipeline_tag: sentence-similarity
45
+ model-index:
46
+ - name: SentenceTransformer based on FacebookAI/xlm-roberta-base
47
+ results:
48
+ - task:
49
+ type: triplet
50
+ name: Triplet
51
+ dataset:
52
+ name: all nli dev
53
+ type: all-nli-dev
54
+ metrics:
55
+ - type: cosine_accuracy
56
+ value: 0.935
57
+ name: Cosine Accuracy
58
+ - type: dot_accuracy
59
+ value: 0.062
60
+ name: Dot Accuracy
61
+ - type: manhattan_accuracy
62
+ value: 0.929
63
+ name: Manhattan Accuracy
64
+ - type: euclidean_accuracy
65
+ value: 0.928
66
+ name: Euclidean Accuracy
67
+ - type: max_accuracy
68
+ value: 0.935
69
+ name: Max Accuracy
70
+ - task:
71
+ type: triplet
72
+ name: Triplet
73
+ dataset:
74
+ name: all nli test
75
+ type: all-nli-test
76
+ metrics:
77
+ - type: cosine_accuracy
78
+ value: 0.931
79
+ name: Cosine Accuracy
80
+ - type: dot_accuracy
81
+ value: 0.061
82
+ name: Dot Accuracy
83
+ - type: manhattan_accuracy
84
+ value: 0.924
85
+ name: Manhattan Accuracy
86
+ - type: euclidean_accuracy
87
+ value: 0.927
88
+ name: Euclidean Accuracy
89
+ - type: max_accuracy
90
+ value: 0.931
91
+ name: Max Accuracy
92
+ ---
93
+
94
+ # SentenceTransformer based on FacebookAI/xlm-roberta-base
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ - **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
103
+ - **Maximum Sequence Length:** 512 tokens
104
+ - **Output Dimensionality:** 768 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ - **Training Dataset:**
107
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
108
+ - **Language:** en
109
+ <!-- - **License:** Unknown -->
110
+
111
+ ### Model Sources
112
+
113
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
114
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
115
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
116
+
117
+ ### Full Model Architecture
118
+
119
+ ```
120
+ SentenceTransformer(
121
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
122
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("sentence_transformers_model_id")
142
+ # Run inference
143
+ sentences = [
144
+ 'The boy scowls',
145
+ 'The boy is outside.',
146
+ 'The person is inside.',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 768]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Triplet
187
+ * Dataset: `all-nli-dev`
188
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:-------------------|:----------|
192
+ | cosine_accuracy | 0.935 |
193
+ | dot_accuracy | 0.062 |
194
+ | manhattan_accuracy | 0.929 |
195
+ | euclidean_accuracy | 0.928 |
196
+ | **max_accuracy** | **0.935** |
197
+
198
+ #### Triplet
199
+ * Dataset: `all-nli-test`
200
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
201
+
202
+ | Metric | Value |
203
+ |:-------------------|:----------|
204
+ | cosine_accuracy | 0.931 |
205
+ | dot_accuracy | 0.061 |
206
+ | manhattan_accuracy | 0.924 |
207
+ | euclidean_accuracy | 0.927 |
208
+ | **max_accuracy** | **0.931** |
209
+
210
+ <!--
211
+ ## Bias, Risks and Limitations
212
+
213
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
214
+ -->
215
+
216
+ <!--
217
+ ### Recommendations
218
+
219
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
220
+ -->
221
+
222
+ ## Training Details
223
+
224
+ ### Training Dataset
225
+
226
+ #### sentence-transformers/all-nli
227
+
228
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
229
+ * Size: 100,000 training samples
230
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
231
+ * Approximate statistics based on the first 1000 samples:
232
+ | | anchor | positive | negative |
233
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
234
+ | type | string | string | string |
235
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
236
+ * Samples:
237
+ | anchor | positive | negative |
238
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
239
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
240
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
241
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
242
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
243
+ ```json
244
+ {
245
+ "scale": 20.0,
246
+ "similarity_fct": "cos_sim"
247
+ }
248
+ ```
249
+
250
+ ### Evaluation Dataset
251
+
252
+ #### sentence-transformers/all-nli
253
+
254
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
255
+ * Size: 1,000 evaluation samples
256
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
257
+ * Approximate statistics based on the first 1000 samples:
258
+ | | anchor | positive | negative |
259
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
260
+ | type | string | string | string |
261
+ | details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
262
+ * Samples:
263
+ | anchor | positive | negative |
264
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
265
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
266
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
267
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
268
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
269
+ ```json
270
+ {
271
+ "scale": 20.0,
272
+ "similarity_fct": "cos_sim"
273
+ }
274
+ ```
275
+
276
+ ### Training Hyperparameters
277
+ #### Non-Default Hyperparameters
278
+
279
+ - `eval_strategy`: steps
280
+ - `per_device_train_batch_size`: 16
281
+ - `per_device_eval_batch_size`: 16
282
+ - `num_train_epochs`: 1
283
+ - `warmup_ratio`: 0.1
284
+ - `fp16`: True
285
+ - `batch_sampler`: no_duplicates
286
+
287
+ #### All Hyperparameters
288
+ <details><summary>Click to expand</summary>
289
+
290
+ - `overwrite_output_dir`: False
291
+ - `do_predict`: False
292
+ - `eval_strategy`: steps
293
+ - `prediction_loss_only`: True
294
+ - `per_device_train_batch_size`: 16
295
+ - `per_device_eval_batch_size`: 16
296
+ - `per_gpu_train_batch_size`: None
297
+ - `per_gpu_eval_batch_size`: None
298
+ - `gradient_accumulation_steps`: 1
299
+ - `eval_accumulation_steps`: None
300
+ - `learning_rate`: 5e-05
301
+ - `weight_decay`: 0.0
302
+ - `adam_beta1`: 0.9
303
+ - `adam_beta2`: 0.999
304
+ - `adam_epsilon`: 1e-08
305
+ - `max_grad_norm`: 1.0
306
+ - `num_train_epochs`: 1
307
+ - `max_steps`: -1
308
+ - `lr_scheduler_type`: linear
309
+ - `lr_scheduler_kwargs`: {}
310
+ - `warmup_ratio`: 0.1
311
+ - `warmup_steps`: 0
312
+ - `log_level`: passive
313
+ - `log_level_replica`: warning
314
+ - `log_on_each_node`: True
315
+ - `logging_nan_inf_filter`: True
316
+ - `save_safetensors`: True
317
+ - `save_on_each_node`: False
318
+ - `save_only_model`: False
319
+ - `restore_callback_states_from_checkpoint`: False
320
+ - `no_cuda`: False
321
+ - `use_cpu`: False
322
+ - `use_mps_device`: False
323
+ - `seed`: 42
324
+ - `data_seed`: None
325
+ - `jit_mode_eval`: False
326
+ - `use_ipex`: False
327
+ - `bf16`: False
328
+ - `fp16`: True
329
+ - `fp16_opt_level`: O1
330
+ - `half_precision_backend`: auto
331
+ - `bf16_full_eval`: False
332
+ - `fp16_full_eval`: False
333
+ - `tf32`: None
334
+ - `local_rank`: 0
335
+ - `ddp_backend`: None
336
+ - `tpu_num_cores`: None
337
+ - `tpu_metrics_debug`: False
338
+ - `debug`: []
339
+ - `dataloader_drop_last`: False
340
+ - `dataloader_num_workers`: 0
341
+ - `dataloader_prefetch_factor`: None
342
+ - `past_index`: -1
343
+ - `disable_tqdm`: False
344
+ - `remove_unused_columns`: True
345
+ - `label_names`: None
346
+ - `load_best_model_at_end`: False
347
+ - `ignore_data_skip`: False
348
+ - `fsdp`: []
349
+ - `fsdp_min_num_params`: 0
350
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
351
+ - `fsdp_transformer_layer_cls_to_wrap`: None
352
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
353
+ - `deepspeed`: None
354
+ - `label_smoothing_factor`: 0.0
355
+ - `optim`: adamw_torch
356
+ - `optim_args`: None
357
+ - `adafactor`: False
358
+ - `group_by_length`: False
359
+ - `length_column_name`: length
360
+ - `ddp_find_unused_parameters`: None
361
+ - `ddp_bucket_cap_mb`: None
362
+ - `ddp_broadcast_buffers`: False
363
+ - `dataloader_pin_memory`: True
364
+ - `dataloader_persistent_workers`: False
365
+ - `skip_memory_metrics`: True
366
+ - `use_legacy_prediction_loop`: False
367
+ - `push_to_hub`: False
368
+ - `resume_from_checkpoint`: None
369
+ - `hub_model_id`: None
370
+ - `hub_strategy`: every_save
371
+ - `hub_private_repo`: False
372
+ - `hub_always_push`: False
373
+ - `gradient_checkpointing`: False
374
+ - `gradient_checkpointing_kwargs`: None
375
+ - `include_inputs_for_metrics`: False
376
+ - `eval_do_concat_batches`: True
377
+ - `fp16_backend`: auto
378
+ - `push_to_hub_model_id`: None
379
+ - `push_to_hub_organization`: None
380
+ - `mp_parameters`:
381
+ - `auto_find_batch_size`: False
382
+ - `full_determinism`: False
383
+ - `torchdynamo`: None
384
+ - `ray_scope`: last
385
+ - `ddp_timeout`: 1800
386
+ - `torch_compile`: False
387
+ - `torch_compile_backend`: None
388
+ - `torch_compile_mode`: None
389
+ - `dispatch_batches`: None
390
+ - `split_batches`: None
391
+ - `include_tokens_per_second`: False
392
+ - `include_num_input_tokens_seen`: False
393
+ - `neftune_noise_alpha`: None
394
+ - `optim_target_modules`: None
395
+ - `batch_eval_metrics`: False
396
+ - `batch_sampler`: no_duplicates
397
+ - `multi_dataset_batch_sampler`: proportional
398
+
399
+ </details>
400
+
401
+ ### Training Logs
402
+ | Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
403
+ |:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
404
+ | 0 | 0 | - | - | 0.587 | - |
405
+ | 0.016 | 100 | 3.4547 | 2.2853 | 0.801 | - |
406
+ | 0.032 | 200 | 1.6761 | 1.3493 | 0.856 | - |
407
+ | 0.048 | 300 | 1.5528 | 1.4181 | 0.83 | - |
408
+ | 0.064 | 400 | 1.0069 | 1.3277 | 0.835 | - |
409
+ | 0.08 | 500 | 1.0611 | 1.4610 | 0.847 | - |
410
+ | 0.096 | 600 | 1.1424 | 1.7394 | 0.805 | - |
411
+ | 0.112 | 700 | 1.3545 | 1.4179 | 0.83 | - |
412
+ | 0.128 | 800 | 1.3587 | 1.6350 | 0.84 | - |
413
+ | 0.144 | 900 | 1.237 | 1.6794 | 0.801 | - |
414
+ | 0.16 | 1000 | 1.2029 | 1.6733 | 0.811 | - |
415
+ | 0.176 | 1100 | 1.2748 | 1.6360 | 0.818 | - |
416
+ | 0.192 | 1200 | 1.1433 | 1.7952 | 0.806 | - |
417
+ | 0.208 | 1300 | 1.0113 | 1.4315 | 0.817 | - |
418
+ | 0.224 | 1400 | 0.8216 | 1.6300 | 0.776 | - |
419
+ | 0.24 | 1500 | 1.3451 | 1.1566 | 0.856 | - |
420
+ | 0.256 | 1600 | 0.8745 | 1.2075 | 0.838 | - |
421
+ | 0.272 | 1700 | 0.9945 | 1.3296 | 0.831 | - |
422
+ | 0.288 | 1800 | 0.9827 | 1.3052 | 0.844 | - |
423
+ | 0.304 | 1900 | 0.974 | 1.1643 | 0.85 | - |
424
+ | 0.32 | 2000 | 0.7555 | 1.2738 | 0.869 | - |
425
+ | 0.336 | 2100 | 0.7176 | 1.3749 | 0.832 | - |
426
+ | 0.352 | 2200 | 0.834 | 1.0712 | 0.879 | - |
427
+ | 0.368 | 2300 | 1.0819 | 1.2763 | 0.849 | - |
428
+ | 0.384 | 2400 | 0.9515 | 1.1384 | 0.848 | - |
429
+ | 0.4 | 2500 | 0.7828 | 1.0879 | 0.861 | - |
430
+ | 0.416 | 2600 | 0.7268 | 0.9835 | 0.868 | - |
431
+ | 0.432 | 2700 | 0.9228 | 1.1840 | 0.851 | - |
432
+ | 0.448 | 2800 | 1.0017 | 1.1968 | 0.853 | - |
433
+ | 0.464 | 2900 | 0.9138 | 0.9931 | 0.869 | - |
434
+ | 0.48 | 3000 | 0.8498 | 0.9926 | 0.876 | - |
435
+ | 0.496 | 3100 | 0.9682 | 1.0004 | 0.866 | - |
436
+ | 0.512 | 3200 | 0.7227 | 0.8490 | 0.883 | - |
437
+ | 0.528 | 3300 | 0.7134 | 0.8215 | 0.884 | - |
438
+ | 0.544 | 3400 | 0.6645 | 0.8889 | 0.877 | - |
439
+ | 0.56 | 3500 | 0.7073 | 0.8374 | 0.888 | - |
440
+ | 0.576 | 3600 | 0.6679 | 0.7780 | 0.911 | - |
441
+ | 0.592 | 3700 | 0.6609 | 0.8129 | 0.896 | - |
442
+ | 0.608 | 3800 | 0.687 | 0.7216 | 0.913 | - |
443
+ | 0.624 | 3900 | 0.5725 | 0.7618 | 0.92 | - |
444
+ | 0.64 | 4000 | 0.87 | 0.7070 | 0.909 | - |
445
+ | 0.656 | 4100 | 1.0892 | 0.7424 | 0.901 | - |
446
+ | 0.672 | 4200 | 1.048 | 0.6750 | 0.909 | - |
447
+ | 0.688 | 4300 | 0.8571 | 0.6474 | 0.903 | - |
448
+ | 0.704 | 4400 | 0.7945 | 0.6095 | 0.911 | - |
449
+ | 0.72 | 4500 | 0.6717 | 0.5664 | 0.93 | - |
450
+ | 0.736 | 4600 | 0.8161 | 0.5479 | 0.919 | - |
451
+ | 0.752 | 4700 | 0.7917 | 0.6420 | 0.911 | - |
452
+ | 0.768 | 4800 | 0.7711 | 0.5856 | 0.916 | - |
453
+ | 0.784 | 4900 | 0.6441 | 0.5775 | 0.916 | - |
454
+ | 0.8 | 5000 | 0.7766 | 0.5785 | 0.922 | - |
455
+ | 0.816 | 5100 | 0.6009 | 0.5680 | 0.921 | - |
456
+ | 0.832 | 5200 | 0.6711 | 0.5487 | 0.921 | - |
457
+ | 0.848 | 5300 | 0.618 | 0.5450 | 0.926 | - |
458
+ | 0.864 | 5400 | 0.6702 | 0.5498 | 0.926 | - |
459
+ | 0.88 | 5500 | 0.7039 | 0.5192 | 0.927 | - |
460
+ | 0.896 | 5600 | 0.6114 | 0.5045 | 0.932 | - |
461
+ | 0.912 | 5700 | 0.7761 | 0.5033 | 0.934 | - |
462
+ | 0.928 | 5800 | 0.6248 | 0.5013 | 0.932 | - |
463
+ | 0.944 | 5900 | 0.8359 | 0.4976 | 0.93 | - |
464
+ | 0.96 | 6000 | 0.8764 | 0.4976 | 0.936 | - |
465
+ | 0.976 | 6100 | 0.763 | 0.4845 | 0.935 | - |
466
+ | 0.992 | 6200 | 0.0001 | 0.4844 | 0.935 | - |
467
+ | 1.0 | 6250 | - | - | - | 0.931 |
468
+
469
+
470
+ ### Framework Versions
471
+ - Python: 3.9.10
472
+ - Sentence Transformers: 3.0.0
473
+ - Transformers: 4.41.2
474
+ - PyTorch: 2.3.0+cu121
475
+ - Accelerate: 0.26.1
476
+ - Datasets: 2.16.1
477
+ - Tokenizers: 0.19.1
478
+
479
+ ## Citation
480
+
481
+ ### BibTeX
482
+
483
+ #### Sentence Transformers
484
+ ```bibtex
485
+ @inproceedings{reimers-2019-sentence-bert,
486
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
487
+ author = "Reimers, Nils and Gurevych, Iryna",
488
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
489
+ month = "11",
490
+ year = "2019",
491
+ publisher = "Association for Computational Linguistics",
492
+ url = "https://arxiv.org/abs/1908.10084",
493
+ }
494
+ ```
495
+
496
+ #### MultipleNegativesRankingLoss
497
+ ```bibtex
498
+ @misc{henderson2017efficient,
499
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
500
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
501
+ year={2017},
502
+ eprint={1705.00652},
503
+ archivePrefix={arXiv},
504
+ primaryClass={cs.CL}
505
+ }
506
+ ```
507
+
508
+ <!--
509
+ ## Glossary
510
+
511
+ *Clearly define terms in order to be accessible across audiences.*
512
+ -->
513
+
514
+ <!--
515
+ ## Model Card Authors
516
+
517
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
518
+ -->
519
+
520
+ <!--
521
+ ## Model Card Contact
522
+
523
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
524
+ -->
final/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "FacebookAI/xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
final/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
final/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d69856f24d162e710b17870ffffd79389dd46abab2a4c0cf6a6050730ff23df0
3
+ size 1112197096
final/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
final/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
final/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
final/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
final/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
final/tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
runs/Jun03_16-50-47_ruche-gpu14.cluster/events.out.tfevents.1717426290.ruche-gpu14.cluster.7739.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1413585010a38d18e998467c77a492a53bc1b70398574bdd1fb846f8e04037a1
3
+ size 56490