Upload folder using huggingface_hub
Browse files
final/README.md
CHANGED
@@ -7,7 +7,7 @@ tags:
|
|
7 |
- sentence-similarity
|
8 |
- feature-extraction
|
9 |
- dataset_size:100K<n<1M
|
10 |
-
- loss:
|
11 |
base_model: FacebookAI/xlm-roberta-large
|
12 |
metrics:
|
13 |
- cosine_accuracy
|
@@ -18,29 +18,29 @@ metrics:
|
|
18 |
widget:
|
19 |
- source_sentence: The boy scowls
|
20 |
sentences:
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
- source_sentence: an eagle flies
|
25 |
-
sentences:
|
26 |
-
- A man floats up a ladder.
|
27 |
-
- He is playing a song.
|
28 |
-
- The t-shirt is white.
|
29 |
- source_sentence: A woman sings.
|
30 |
sentences:
|
31 |
-
- The woman is
|
32 |
-
-
|
33 |
-
-
|
34 |
- source_sentence: A bird flying.
|
35 |
sentences:
|
36 |
-
-
|
37 |
-
-
|
38 |
-
-
|
|
|
|
|
|
|
|
|
|
|
39 |
- source_sentence: There's a dock
|
40 |
sentences:
|
41 |
-
-
|
42 |
-
-
|
43 |
-
-
|
44 |
pipeline_tag: sentence-similarity
|
45 |
model-index:
|
46 |
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
@@ -53,19 +53,19 @@ model-index:
|
|
53 |
type: all-nli-dev
|
54 |
metrics:
|
55 |
- type: cosine_accuracy
|
56 |
-
value: 0.
|
57 |
name: Cosine Accuracy
|
58 |
- type: dot_accuracy
|
59 |
-
value: 0.
|
60 |
name: Dot Accuracy
|
61 |
- type: manhattan_accuracy
|
62 |
-
value: 0.
|
63 |
name: Manhattan Accuracy
|
64 |
- type: euclidean_accuracy
|
65 |
-
value: 0.
|
66 |
name: Euclidean Accuracy
|
67 |
- type: max_accuracy
|
68 |
-
value: 0.
|
69 |
name: Max Accuracy
|
70 |
- task:
|
71 |
type: triplet
|
@@ -75,19 +75,19 @@ model-index:
|
|
75 |
type: all-nli-test
|
76 |
metrics:
|
77 |
- type: cosine_accuracy
|
78 |
-
value: 0.
|
79 |
name: Cosine Accuracy
|
80 |
- type: dot_accuracy
|
81 |
-
value: 0.
|
82 |
name: Dot Accuracy
|
83 |
- type: manhattan_accuracy
|
84 |
-
value: 0.
|
85 |
name: Manhattan Accuracy
|
86 |
- type: euclidean_accuracy
|
87 |
-
value: 0.
|
88 |
name: Euclidean Accuracy
|
89 |
- type: max_accuracy
|
90 |
-
value: 0.
|
91 |
name: Max Accuracy
|
92 |
---
|
93 |
|
@@ -142,8 +142,8 @@ model = SentenceTransformer("sentence_transformers_model_id")
|
|
142 |
# Run inference
|
143 |
sentences = [
|
144 |
"There's a dock",
|
145 |
-
'
|
146 |
-
'
|
147 |
]
|
148 |
embeddings = model.encode(sentences)
|
149 |
print(embeddings.shape)
|
@@ -189,11 +189,11 @@ You can finetune this model on your own dataset.
|
|
189 |
|
190 |
| Metric | Value |
|
191 |
|:-------------------|:----------|
|
192 |
-
| cosine_accuracy | 0.
|
193 |
-
| dot_accuracy | 0.
|
194 |
-
| manhattan_accuracy | 0.
|
195 |
-
| euclidean_accuracy | 0.
|
196 |
-
| **max_accuracy** | **0.
|
197 |
|
198 |
#### Triplet
|
199 |
* Dataset: `all-nli-test`
|
@@ -201,11 +201,11 @@ You can finetune this model on your own dataset.
|
|
201 |
|
202 |
| Metric | Value |
|
203 |
|:-------------------|:----------|
|
204 |
-
| cosine_accuracy | 0.
|
205 |
-
| dot_accuracy | 0.
|
206 |
-
| manhattan_accuracy | 0.
|
207 |
-
| euclidean_accuracy | 0.
|
208 |
-
| **max_accuracy** | **0.
|
209 |
|
210 |
<!--
|
211 |
## Bias, Risks and Limitations
|
@@ -239,7 +239,7 @@ You can finetune this model on your own dataset.
|
|
239 |
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
240 |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
241 |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
242 |
-
* Loss: [<code>
|
243 |
```json
|
244 |
{
|
245 |
"scale": 20.0,
|
@@ -265,7 +265,7 @@ You can finetune this model on your own dataset.
|
|
265 |
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
266 |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
267 |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
268 |
-
* Loss: [<code>
|
269 |
```json
|
270 |
{
|
271 |
"scale": 20.0,
|
@@ -281,7 +281,7 @@ You can finetune this model on your own dataset.
|
|
281 |
- `per_device_eval_batch_size`: 16
|
282 |
- `num_train_epochs`: 1
|
283 |
- `warmup_ratio`: 0.1
|
284 |
-
- `
|
285 |
- `batch_sampler`: no_duplicates
|
286 |
|
287 |
#### All Hyperparameters
|
@@ -324,8 +324,8 @@ You can finetune this model on your own dataset.
|
|
324 |
- `data_seed`: None
|
325 |
- `jit_mode_eval`: False
|
326 |
- `use_ipex`: False
|
327 |
-
- `bf16`:
|
328 |
-
- `fp16`:
|
329 |
- `fp16_opt_level`: O1
|
330 |
- `half_precision_backend`: auto
|
331 |
- `bf16_full_eval`: False
|
@@ -401,70 +401,70 @@ You can finetune this model on your own dataset.
|
|
401 |
### Training Logs
|
402 |
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|
403 |
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
|
404 |
-
| 0 | 0 | - | - | 0.
|
405 |
-
| 0.016 | 100 | 3.
|
406 |
-
| 0.032 | 200 |
|
407 |
-
| 0.048 | 300 |
|
408 |
-
| 0.064 | 400 | 1.
|
409 |
-
| 0.08 | 500 |
|
410 |
-
| 0.096 | 600 |
|
411 |
-
| 0.112 | 700 |
|
412 |
-
| 0.128 | 800 |
|
413 |
-
| 0.144 | 900 |
|
414 |
-
| 0.16 | 1000 |
|
415 |
-
| 0.176 | 1100 |
|
416 |
-
| 0.192 | 1200 |
|
417 |
-
| 0.208 | 1300 |
|
418 |
-
| 0.224 | 1400 |
|
419 |
-
| 0.24 | 1500 |
|
420 |
-
| 0.256 | 1600 |
|
421 |
-
| 0.272 | 1700 |
|
422 |
-
| 0.288 | 1800 |
|
423 |
-
| 0.304 | 1900 |
|
424 |
-
| 0.32 | 2000 |
|
425 |
-
| 0.336 | 2100 |
|
426 |
-
| 0.352 | 2200 |
|
427 |
-
| 0.368 | 2300 |
|
428 |
-
| 0.384 | 2400 |
|
429 |
-
| 0.4 | 2500 |
|
430 |
-
| 0.416 | 2600 |
|
431 |
-
| 0.432 | 2700 |
|
432 |
-
| 0.448 | 2800 |
|
433 |
-
| 0.464 | 2900 |
|
434 |
-
| 0.48 | 3000 |
|
435 |
-
| 0.496 | 3100 |
|
436 |
-
| 0.512 | 3200 |
|
437 |
-
| 0.528 | 3300 |
|
438 |
-
| 0.544 | 3400 |
|
439 |
-
| 0.56 | 3500 |
|
440 |
-
| 0.576 | 3600 |
|
441 |
-
| 0.592 | 3700 |
|
442 |
-
| 0.608 | 3800 |
|
443 |
-
| 0.624 | 3900 |
|
444 |
-
| 0.64 | 4000 |
|
445 |
-
| 0.656 | 4100 |
|
446 |
-
| 0.672 | 4200 |
|
447 |
-
| 0.688 | 4300 |
|
448 |
-
| 0.704 | 4400 |
|
449 |
-
| 0.72 | 4500 |
|
450 |
-
| 0.736 | 4600 |
|
451 |
-
| 0.752 | 4700 |
|
452 |
-
| 0.768 | 4800 |
|
453 |
-
| 0.784 | 4900 |
|
454 |
-
| 0.8 | 5000 |
|
455 |
-
| 0.816 | 5100 |
|
456 |
-
| 0.832 | 5200 |
|
457 |
-
| 0.848 | 5300 |
|
458 |
-
| 0.864 | 5400 |
|
459 |
-
| 0.88 | 5500 |
|
460 |
-
| 0.896 | 5600 |
|
461 |
-
| 0.912 | 5700 |
|
462 |
-
| 0.928 | 5800 |
|
463 |
-
| 0.944 | 5900 |
|
464 |
-
| 0.96 | 6000 |
|
465 |
-
| 0.976 | 6100 |
|
466 |
-
| 0.992 | 6200 | 0.
|
467 |
-
| 1.0 | 6250 | - | - | - | 0.
|
468 |
|
469 |
|
470 |
### Framework Versions
|
@@ -493,15 +493,15 @@ You can finetune this model on your own dataset.
|
|
493 |
}
|
494 |
```
|
495 |
|
496 |
-
####
|
497 |
```bibtex
|
498 |
-
@misc{
|
499 |
-
title={
|
500 |
-
author={
|
501 |
-
year={
|
502 |
-
eprint={
|
503 |
archivePrefix={arXiv},
|
504 |
-
primaryClass={cs.
|
505 |
}
|
506 |
```
|
507 |
|
|
|
7 |
- sentence-similarity
|
8 |
- feature-extraction
|
9 |
- dataset_size:100K<n<1M
|
10 |
+
- loss:CachedMultipleNegativesRankingLoss
|
11 |
base_model: FacebookAI/xlm-roberta-large
|
12 |
metrics:
|
13 |
- cosine_accuracy
|
|
|
18 |
widget:
|
19 |
- source_sentence: The boy scowls
|
20 |
sentences:
|
21 |
+
- The boy is outside.
|
22 |
+
- The man is in a city.
|
23 |
+
- A woman at home.
|
|
|
|
|
|
|
|
|
|
|
24 |
- source_sentence: A woman sings.
|
25 |
sentences:
|
26 |
+
- The woman is singing.
|
27 |
+
- a man is wearing blue
|
28 |
+
- The boys are eating.
|
29 |
- source_sentence: A bird flying.
|
30 |
sentences:
|
31 |
+
- A butterfly flys freely.
|
32 |
+
- She checks her phone.
|
33 |
+
- A man is sleeping.
|
34 |
+
- source_sentence: an eagle flies
|
35 |
+
sentences:
|
36 |
+
- A butterfly flys freely.
|
37 |
+
- The men are together.
|
38 |
+
- A man is sleeping.
|
39 |
- source_sentence: There's a dock
|
40 |
sentences:
|
41 |
+
- There are people outdoors
|
42 |
+
- Boy playing baseball.
|
43 |
+
- A man is sleeping.
|
44 |
pipeline_tag: sentence-similarity
|
45 |
model-index:
|
46 |
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
|
|
53 |
type: all-nli-dev
|
54 |
metrics:
|
55 |
- type: cosine_accuracy
|
56 |
+
value: 0.941
|
57 |
name: Cosine Accuracy
|
58 |
- type: dot_accuracy
|
59 |
+
value: 0.062
|
60 |
name: Dot Accuracy
|
61 |
- type: manhattan_accuracy
|
62 |
+
value: 0.937
|
63 |
name: Manhattan Accuracy
|
64 |
- type: euclidean_accuracy
|
65 |
+
value: 0.938
|
66 |
name: Euclidean Accuracy
|
67 |
- type: max_accuracy
|
68 |
+
value: 0.941
|
69 |
name: Max Accuracy
|
70 |
- task:
|
71 |
type: triplet
|
|
|
75 |
type: all-nli-test
|
76 |
metrics:
|
77 |
- type: cosine_accuracy
|
78 |
+
value: 0.943
|
79 |
name: Cosine Accuracy
|
80 |
- type: dot_accuracy
|
81 |
+
value: 0.057
|
82 |
name: Dot Accuracy
|
83 |
- type: manhattan_accuracy
|
84 |
+
value: 0.947
|
85 |
name: Manhattan Accuracy
|
86 |
- type: euclidean_accuracy
|
87 |
+
value: 0.947
|
88 |
name: Euclidean Accuracy
|
89 |
- type: max_accuracy
|
90 |
+
value: 0.947
|
91 |
name: Max Accuracy
|
92 |
---
|
93 |
|
|
|
142 |
# Run inference
|
143 |
sentences = [
|
144 |
"There's a dock",
|
145 |
+
'There are people outdoors',
|
146 |
+
'Boy playing baseball.',
|
147 |
]
|
148 |
embeddings = model.encode(sentences)
|
149 |
print(embeddings.shape)
|
|
|
189 |
|
190 |
| Metric | Value |
|
191 |
|:-------------------|:----------|
|
192 |
+
| cosine_accuracy | 0.941 |
|
193 |
+
| dot_accuracy | 0.062 |
|
194 |
+
| manhattan_accuracy | 0.937 |
|
195 |
+
| euclidean_accuracy | 0.938 |
|
196 |
+
| **max_accuracy** | **0.941** |
|
197 |
|
198 |
#### Triplet
|
199 |
* Dataset: `all-nli-test`
|
|
|
201 |
|
202 |
| Metric | Value |
|
203 |
|:-------------------|:----------|
|
204 |
+
| cosine_accuracy | 0.943 |
|
205 |
+
| dot_accuracy | 0.057 |
|
206 |
+
| manhattan_accuracy | 0.947 |
|
207 |
+
| euclidean_accuracy | 0.947 |
|
208 |
+
| **max_accuracy** | **0.947** |
|
209 |
|
210 |
<!--
|
211 |
## Bias, Risks and Limitations
|
|
|
239 |
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
240 |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
241 |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
242 |
+
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
|
243 |
```json
|
244 |
{
|
245 |
"scale": 20.0,
|
|
|
265 |
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
266 |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
267 |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
268 |
+
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
|
269 |
```json
|
270 |
{
|
271 |
"scale": 20.0,
|
|
|
281 |
- `per_device_eval_batch_size`: 16
|
282 |
- `num_train_epochs`: 1
|
283 |
- `warmup_ratio`: 0.1
|
284 |
+
- `bf16`: True
|
285 |
- `batch_sampler`: no_duplicates
|
286 |
|
287 |
#### All Hyperparameters
|
|
|
324 |
- `data_seed`: None
|
325 |
- `jit_mode_eval`: False
|
326 |
- `use_ipex`: False
|
327 |
+
- `bf16`: True
|
328 |
+
- `fp16`: False
|
329 |
- `fp16_opt_level`: O1
|
330 |
- `half_precision_backend`: auto
|
331 |
- `bf16_full_eval`: False
|
|
|
401 |
### Training Logs
|
402 |
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|
403 |
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
|
404 |
+
| 0 | 0 | - | - | 0.613 | - |
|
405 |
+
| 0.016 | 100 | 3.4639 | 3.4199 | 0.621 | - |
|
406 |
+
| 0.032 | 200 | 3.4496 | 3.1967 | 0.841 | - |
|
407 |
+
| 0.048 | 300 | 2.2928 | 1.0476 | 0.864 | - |
|
408 |
+
| 0.064 | 400 | 1.2217 | 0.9993 | 0.871 | - |
|
409 |
+
| 0.08 | 500 | 1.1075 | 1.2674 | 0.85 | - |
|
410 |
+
| 0.096 | 600 | 1.2113 | 1.2565 | 0.866 | - |
|
411 |
+
| 0.112 | 700 | 1.0326 | 1.3313 | 0.855 | - |
|
412 |
+
| 0.128 | 800 | 1.2326 | 1.3698 | 0.851 | - |
|
413 |
+
| 0.144 | 900 | 1.2897 | 1.2690 | 0.855 | - |
|
414 |
+
| 0.16 | 1000 | 1.275 | 1.1231 | 0.863 | - |
|
415 |
+
| 0.176 | 1100 | 1.0823 | 1.2453 | 0.853 | - |
|
416 |
+
| 0.192 | 1200 | 1.1933 | 1.1119 | 0.868 | - |
|
417 |
+
| 0.208 | 1300 | 1.0102 | 0.9491 | 0.86 | - |
|
418 |
+
| 0.224 | 1400 | 0.8738 | 1.0682 | 0.87 | - |
|
419 |
+
| 0.24 | 1500 | 0.9482 | 0.8546 | 0.89 | - |
|
420 |
+
| 0.256 | 1600 | 0.6985 | 0.9136 | 0.88 | - |
|
421 |
+
| 0.272 | 1700 | 0.9908 | 0.9539 | 0.873 | - |
|
422 |
+
| 0.288 | 1800 | 1.0166 | 0.9277 | 0.878 | - |
|
423 |
+
| 0.304 | 1900 | 0.9441 | 0.9000 | 0.886 | - |
|
424 |
+
| 0.32 | 2000 | 0.8911 | 0.8364 | 0.891 | - |
|
425 |
+
| 0.336 | 2100 | 0.6746 | 0.8585 | 0.883 | - |
|
426 |
+
| 0.352 | 2200 | 0.7379 | 0.8332 | 0.888 | - |
|
427 |
+
| 0.368 | 2300 | 0.896 | 0.7617 | 0.89 | - |
|
428 |
+
| 0.384 | 2400 | 0.7901 | 0.7351 | 0.887 | - |
|
429 |
+
| 0.4 | 2500 | 0.811 | 0.7855 | 0.89 | - |
|
430 |
+
| 0.416 | 2600 | 0.6723 | 0.6756 | 0.899 | - |
|
431 |
+
| 0.432 | 2700 | 0.8839 | 0.7839 | 0.894 | - |
|
432 |
+
| 0.448 | 2800 | 0.9027 | 0.7319 | 0.903 | - |
|
433 |
+
| 0.464 | 2900 | 0.9276 | 0.7038 | 0.893 | - |
|
434 |
+
| 0.48 | 3000 | 0.7692 | 0.6653 | 0.903 | - |
|
435 |
+
| 0.496 | 3100 | 0.8044 | 0.6466 | 0.901 | - |
|
436 |
+
| 0.512 | 3200 | 0.6433 | 0.6145 | 0.906 | - |
|
437 |
+
| 0.528 | 3300 | 0.6642 | 0.5774 | 0.912 | - |
|
438 |
+
| 0.544 | 3400 | 0.5904 | 0.6054 | 0.907 | - |
|
439 |
+
| 0.56 | 3500 | 0.6378 | 0.5841 | 0.91 | - |
|
440 |
+
| 0.576 | 3600 | 0.5602 | 0.5444 | 0.921 | - |
|
441 |
+
| 0.592 | 3700 | 0.6436 | 0.5563 | 0.917 | - |
|
442 |
+
| 0.608 | 3800 | 0.588 | 0.5108 | 0.927 | - |
|
443 |
+
| 0.624 | 3900 | 0.5834 | 0.5059 | 0.925 | - |
|
444 |
+
| 0.64 | 4000 | 0.842 | 0.5217 | 0.929 | - |
|
445 |
+
| 0.656 | 4100 | 1.0995 | 0.5060 | 0.933 | - |
|
446 |
+
| 0.672 | 4200 | 0.9605 | 0.4842 | 0.928 | - |
|
447 |
+
| 0.688 | 4300 | 0.7811 | 0.4756 | 0.93 | - |
|
448 |
+
| 0.704 | 4400 | 0.7288 | 0.4650 | 0.938 | - |
|
449 |
+
| 0.72 | 4500 | 0.6636 | 0.4576 | 0.94 | - |
|
450 |
+
| 0.736 | 4600 | 0.7445 | 0.4552 | 0.934 | - |
|
451 |
+
| 0.752 | 4700 | 0.7687 | 0.4511 | 0.934 | - |
|
452 |
+
| 0.768 | 4800 | 0.7101 | 0.4446 | 0.936 | - |
|
453 |
+
| 0.784 | 4900 | 0.6586 | 0.4378 | 0.937 | - |
|
454 |
+
| 0.8 | 5000 | 0.789 | 0.4368 | 0.938 | - |
|
455 |
+
| 0.816 | 5100 | 0.6227 | 0.4344 | 0.941 | - |
|
456 |
+
| 0.832 | 5200 | 0.6994 | 0.4349 | 0.939 | - |
|
457 |
+
| 0.848 | 5300 | 0.687 | 0.4327 | 0.943 | - |
|
458 |
+
| 0.864 | 5400 | 0.76 | 0.4319 | 0.943 | - |
|
459 |
+
| 0.88 | 5500 | 0.6644 | 0.4323 | 0.941 | - |
|
460 |
+
| 0.896 | 5600 | 0.6535 | 0.4306 | 0.941 | - |
|
461 |
+
| 0.912 | 5700 | 0.7622 | 0.4289 | 0.941 | - |
|
462 |
+
| 0.928 | 5800 | 0.7053 | 0.4288 | 0.94 | - |
|
463 |
+
| 0.944 | 5900 | 0.8093 | 0.4289 | 0.94 | - |
|
464 |
+
| 0.96 | 6000 | 0.8658 | 0.4284 | 0.941 | - |
|
465 |
+
| 0.976 | 6100 | 0.7624 | 0.4283 | 0.941 | - |
|
466 |
+
| 0.992 | 6200 | 0.0003 | 0.4286 | 0.941 | - |
|
467 |
+
| 1.0 | 6250 | - | - | - | 0.947 |
|
468 |
|
469 |
|
470 |
### Framework Versions
|
|
|
493 |
}
|
494 |
```
|
495 |
|
496 |
+
#### CachedMultipleNegativesRankingLoss
|
497 |
```bibtex
|
498 |
+
@misc{gao2021scaling,
|
499 |
+
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
|
500 |
+
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
|
501 |
+
year={2021},
|
502 |
+
eprint={2101.06983},
|
503 |
archivePrefix={arXiv},
|
504 |
+
primaryClass={cs.LG}
|
505 |
}
|
506 |
```
|
507 |
|
final/config.json
CHANGED
@@ -20,7 +20,7 @@
|
|
20 |
"output_past": true,
|
21 |
"pad_token_id": 1,
|
22 |
"position_embedding_type": "absolute",
|
23 |
-
"torch_dtype": "
|
24 |
"transformers_version": "4.41.2",
|
25 |
"type_vocab_size": 1,
|
26 |
"use_cache": true,
|
|
|
20 |
"output_past": true,
|
21 |
"pad_token_id": 1,
|
22 |
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
"transformers_version": "4.41.2",
|
25 |
"type_vocab_size": 1,
|
26 |
"use_cache": true,
|
final/model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e81195ec7ed25e3bc167b118e7676c00ae9f6d52630d8d25e4cfa5974ddf530
|
3 |
+
size 1119826072
|
runs/Jun03_21-23-40_ruche-gpu18.cluster/events.out.tfevents.1717442695.ruche-gpu18.cluster.1785.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6202c48153d42fde3cf0082ca6c6a70f02b954c582d4054b5ec57f7ab8f5969a
|
3 |
+
size 15963
|
runs/Jun03_21-55-04_ruche-gpu18.cluster/events.out.tfevents.1717444545.ruche-gpu18.cluster.20850.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6d264d673c99450b336f2afe2e5b1eeabbe74cba8049adbc8aa526cd738e7de
|
3 |
+
size 56493
|