|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
![Tesoro](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png) |
|
|
|
Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series created by [Migel Tissera](https://x.com/migtissera). |
|
|
|
The compute for this model was generously sponsored by [KindoAI](https://kindo.ai). |
|
|
|
|
|
# Sample Inference Python Script: |
|
|
|
```python |
|
import torch, json |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "migtissera/Tess-3-Llama-3.1-405B" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
load_in_4bit=True, |
|
trust_remote_code=False, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False) |
|
|
|
terminators = [tokenizer.convert_tokens_to_ids("<|im_end|>")] |
|
|
|
|
|
def generate_text(instruction): |
|
tokens = tokenizer.encode(instruction) |
|
tokens = torch.LongTensor(tokens).unsqueeze(0) |
|
tokens = tokens.to("cuda") |
|
|
|
instance = { |
|
"input_ids": tokens, |
|
"top_p": 1.0, |
|
"temperature": 0.75, |
|
"generate_len": 2048, |
|
"top_k": 50, |
|
} |
|
|
|
length = len(tokens[0]) |
|
with torch.no_grad(): |
|
rest = model.generate( |
|
input_ids=tokens, |
|
max_length=length + instance["generate_len"], |
|
use_cache=True, |
|
do_sample=True, |
|
top_p=instance["top_p"], |
|
temperature=instance["temperature"], |
|
top_k=instance["top_k"], |
|
num_return_sequences=1, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=terminators, |
|
) |
|
output = rest[0][length:] |
|
string = tokenizer.decode(output, skip_special_tokens=True) |
|
return f"{string}" |
|
|
|
|
|
|
|
conversation = f"""<|im_start|>system\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|im_end|>\n<|im_start|>user\n""" |
|
|
|
while True: |
|
user_input = input("You: ") |
|
llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n" |
|
answer = generate_text(llm_prompt) |
|
print(answer) |
|
conversation = f"{llm_prompt}{answer}<|im_end|>\n<|im_start|>user\n" |
|
``` |