metadata
language:
- it
license: cc-by-nc-4.0
tags:
- sft
- it
- mistral
- chatml
- axolotl
prompt_template: >-
<|im_start|>system {system_message}<|im_end|> <|im_start|>user
{prompt}<|im_end|> <|im_start|>assistant
model-index:
- name: maestrale-chat-v0.4-beta
results: []
Maestrale chat beta ༄
By @efederici and @mferraretto
Model description
- Language Model: Mistral-7b for the Italian language, continued pre-training for Italian on a curated large-scale high-quality corpus, merged with occiglot.
- Fine-Tuning: SFT performed on 1.7M convs/instructions for 2 epochs.
- DPO: Aligned with DPO on multiple datasets.
v0.4
- Agent
- Improved truthfullness
- Improved Math & Reasoning capabilities
- Mermaid mindmaps
- More latin translations, poems, ...
This model uses ChatML prompt format:
<|im_start|>system
Sei un assistente utile.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Scores
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
hellaswag_it | 1 | none | 0 | acc | 0.5270 | ± | 0.0052 |
none | 0 | acc_norm | 0.7037 | ± | 0.0048 | ||
arc_it | 1 | none | 0 | acc | 0.1771 | ± | 0.0112 |
none | 0 | acc_norm | 0.5218 | ± | 0.0146 | ||
m_mmlu_it | 0 | none | 5 | acc | 0.5623 | ± | 0.0043 |
Usage:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
GenerationConfig,
TextStreamer
)
import torch
tokenizer = AutoTokenizer.from_pretrained("mii-llm/maestrale-chat-v0.4-beta")
model = AutoModelForCausalLM.from_pretrained("mii-llm/maestrale-chat-v0.4-beta", load_in_8bit=True, device_map="auto")
gen = GenerationConfig(
do_sample=True,
temperature=0.7,
repetition_penalty=1.2,
top_k=50,
top_p=0.95,
max_new_tokens=500,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>")
)
streamer = TextStreamer(tokenizer, skip_prompt=True)
messages = [
{"role": "system", "content": "Sei un assistente utile."},
{"role": "user", "content": "{prompt}"}
]
with torch.no_grad():
temp = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(temp, return_tensors="pt").to("cuda")
_ = model.generate(
**inputs,
streamer=streamer,
generation_config=gen
)
Examples
Mindmaps
messages = [
{"role": "system", "content": "Fornisci una mindmap Mermaid sull'argomento in input."},
{"role": "user", "content": "Argomento: [argomento]"}
]
SQL
schema = "[db schema]"
messages = [
{"role": "system", "content": f"Sei un assistente SQL e il tuo compito è convertire la domanda dell'utente in codice SQL valido rispetto allo schema del database fornito.\n\nSchema:\n```sql\n{schema}\n```"},
{"role": "user", "content": "Conta il numero di X prodotti dall'azienda Y"}
]
Article from index
messages = [
{"role": "system", "content": "Sei un assistente utile."},
{"role": "user", "content": (
"Scrivi un articolo a partire dal titolo e dall'indice dei contenuti.\n\n"
"Titolo: [titolo]\n\n"
"Indice:\n\n"
"1. Introduzione\n"
"2. [heading]\n"
"..."
)}
]
Intended uses & limitations
It's a beta version; it's quite safe
, and it can refuse to answer to toxic questions.