Edit model card

distilbert-base-uncased-finetuned-amazon-review

This model is a fine-tuned version of distilbert-base-uncased on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3494
  • Accuracy: 0.693
  • F1: 0.7003
  • Precision: 0.7095
  • Recall: 0.693

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.5 500 0.8287 0.7104 0.7120 0.7152 0.7104
0.4238 1.0 1000 0.8917 0.7094 0.6989 0.6917 0.7094
0.4238 1.5 1500 0.9367 0.6884 0.6983 0.7151 0.6884
0.3152 2.0 2000 0.9845 0.7116 0.7144 0.7176 0.7116
0.3152 2.5 2500 1.0752 0.6814 0.6968 0.7232 0.6814
0.2454 3.0 3000 1.1215 0.6918 0.6954 0.7068 0.6918
0.2454 3.5 3500 1.2905 0.6976 0.7048 0.7138 0.6976
0.1989 4.0 4000 1.2938 0.694 0.7016 0.7113 0.694
0.1989 4.5 4500 1.3623 0.6972 0.7014 0.7062 0.6972
0.1746 5.0 5000 1.3494 0.693 0.7003 0.7095 0.693

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train milyiyo/distilbert-base-uncased-finetuned-amazon-review

Evaluation results