|
--- |
|
license: mit |
|
base_model: VietAI/vit5-large-vietnews-summarization |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: finetuned-news_summarization_vi |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/minhquy16/huggingface/runs/4usld66u) |
|
# finetuned-news_summarization_vi |
|
|
|
This model is a fine-tuned version of [VietAI/vit5-large-vietnews-summarization](https://huggingface.co/VietAI/vit5-large-vietnews-summarization) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2271 |
|
- Rouge1: 0.253 |
|
- Rouge2: 0.1919 |
|
- Rougel: 0.2233 |
|
- Rougelsum: 0.2233 |
|
- Gen Len: 18.496 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.2561 | 1.0 | 65361 | 0.2342 | 0.248 | 0.1883 | 0.2192 | 0.2192 | 18.274 | |
|
| 0.1831 | 2.0 | 130722 | 0.2271 | 0.253 | 0.1919 | 0.2233 | 0.2233 | 18.496 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|