vovinam-wav2vec2-base-vi-160h-finetuned
This model is a fine-tuned version of minhtien2405/wav2vec2-base-vi-160h-finetuned on the minhtien2405/VoviAIDataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.0769
- Wer: 0.1038
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.7551 | 0.2413 | 100 | 0.6147 | 0.4234 |
| 0.6417 | 0.4825 | 200 | 0.5227 | 0.3592 |
| 0.5884 | 0.7238 | 300 | 0.5170 | 0.3392 |
| 0.5581 | 0.9650 | 400 | 0.4353 | 0.3093 |
| 0.4546 | 1.2051 | 500 | 0.4524 | 0.3003 |
| 0.4408 | 1.4463 | 600 | 0.3799 | 0.2603 |
| 0.4138 | 1.6876 | 700 | 0.3509 | 0.2563 |
| 0.3814 | 1.9288 | 800 | 0.3370 | 0.2446 |
| 0.315 | 2.1689 | 900 | 0.3238 | 0.2382 |
| 0.3098 | 2.4101 | 1000 | 0.3128 | 0.2362 |
| 0.2909 | 2.6514 | 1100 | 0.2790 | 0.2216 |
| 0.2749 | 2.8926 | 1200 | 0.2975 | 0.2310 |
| 0.2383 | 3.1327 | 1300 | 0.2833 | 0.2194 |
| 0.2415 | 3.3739 | 1400 | 0.2544 | 0.2067 |
| 0.2937 | 3.6152 | 1500 | 0.2833 | 0.2068 |
| 0.2418 | 3.8565 | 1600 | 0.2668 | 0.2059 |
| 0.2103 | 4.0965 | 1700 | 0.2629 | 0.1922 |
| 0.2136 | 4.3378 | 1800 | 0.2574 | 0.1983 |
| 0.1965 | 4.5790 | 1900 | 0.2383 | 0.1869 |
| 0.2095 | 4.8203 | 2000 | 0.2198 | 0.1777 |
| 0.1759 | 5.0603 | 2100 | 0.2180 | 0.1884 |
| 0.1703 | 5.3016 | 2200 | 0.2188 | 0.1844 |
| 0.1637 | 5.5428 | 2300 | 0.2333 | 0.1820 |
| 0.1638 | 5.7841 | 2400 | 0.2206 | 0.1698 |
| 0.1583 | 6.0241 | 2500 | 0.2155 | 0.1795 |
| 0.1461 | 6.2654 | 2600 | 0.2005 | 0.1821 |
| 0.1478 | 6.5066 | 2700 | 0.2179 | 0.1789 |
| 0.1491 | 6.7479 | 2800 | 0.2006 | 0.1731 |
| 0.151 | 6.9891 | 2900 | 0.2171 | 0.1809 |
| 0.1416 | 7.2292 | 3000 | 0.2006 | 0.1700 |
| 0.1355 | 7.4704 | 3100 | 0.1743 | 0.1623 |
| 0.1236 | 7.7117 | 3200 | 0.1886 | 0.1612 |
| 0.1355 | 7.9530 | 3300 | 0.1778 | 0.1630 |
| 0.1198 | 8.1930 | 3400 | 0.2032 | 0.1606 |
| 0.124 | 8.4343 | 3500 | 0.1812 | 0.1568 |
| 0.1191 | 8.6755 | 3600 | 0.1854 | 0.1642 |
| 0.1119 | 8.9168 | 3700 | 0.2193 | 0.1616 |
| 0.1101 | 9.1568 | 3800 | 0.2105 | 0.1630 |
| 0.1213 | 9.3981 | 3900 | 0.1639 | 0.1522 |
| 0.1072 | 9.6393 | 4000 | 0.1769 | 0.1543 |
| 0.1109 | 9.8806 | 4100 | 0.1960 | 0.1592 |
| 0.0929 | 10.1206 | 4200 | 0.1611 | 0.1567 |
| 0.1003 | 10.3619 | 4300 | 0.1663 | 0.1540 |
| 0.1074 | 10.6031 | 4400 | 0.2051 | 0.1692 |
| 0.1119 | 10.8444 | 4500 | 0.1717 | 0.1552 |
| 0.1068 | 11.0844 | 4600 | 0.1872 | 0.1453 |
| 0.0953 | 11.3257 | 4700 | 0.1757 | 0.1453 |
| 0.0985 | 11.5669 | 4800 | 0.1818 | 0.1496 |
| 0.0998 | 11.8082 | 4900 | 0.1950 | 0.1509 |
| 0.0952 | 12.0483 | 5000 | 0.1489 | 0.1412 |
| 0.0805 | 12.2895 | 5100 | 0.1755 | 0.1409 |
| 0.0837 | 12.5308 | 5200 | 0.1600 | 0.1413 |
| 0.0826 | 12.7720 | 5300 | 0.1562 | 0.1434 |
| 0.0958 | 13.0121 | 5400 | 0.1608 | 0.1399 |
| 0.0782 | 13.2533 | 5500 | 0.1510 | 0.1363 |
| 0.0702 | 13.4946 | 5600 | 0.1631 | 0.1419 |
| 0.0811 | 13.7358 | 5700 | 0.1578 | 0.1436 |
| 0.0823 | 13.9771 | 5800 | 0.1866 | 0.1490 |
| 0.0929 | 14.2171 | 5900 | 0.1579 | 0.1438 |
| 0.0734 | 14.4584 | 6000 | 0.1671 | 0.1466 |
| 0.0697 | 14.6996 | 6100 | 0.1548 | 0.1398 |
| 0.078 | 14.9409 | 6200 | 0.1715 | 0.1448 |
| 0.0633 | 15.1809 | 6300 | 0.1519 | 0.1387 |
| 0.0661 | 15.4222 | 6400 | 0.1462 | 0.1375 |
| 0.0782 | 15.6634 | 6500 | 0.1539 | 0.1432 |
| 0.0724 | 15.9047 | 6600 | 0.1492 | 0.1383 |
| 0.0636 | 16.1448 | 6700 | 0.1513 | 0.1366 |
| 0.0576 | 16.3860 | 6800 | 0.1428 | 0.1372 |
| 0.0669 | 16.6273 | 6900 | 0.1470 | 0.1327 |
| 0.0549 | 16.8685 | 7000 | 0.1546 | 0.1321 |
| 0.0608 | 17.1086 | 7100 | 0.1632 | 0.1389 |
| 0.0598 | 17.3498 | 7200 | 0.1451 | 0.1350 |
| 0.0589 | 17.5911 | 7300 | 0.1752 | 0.1443 |
| 0.0595 | 17.8323 | 7400 | 0.1446 | 0.1375 |
| 0.0627 | 18.0724 | 7500 | 0.1583 | 0.1351 |
| 0.0625 | 18.3136 | 7600 | 0.1230 | 0.1329 |
| 0.0572 | 18.5549 | 7700 | 0.1376 | 0.1333 |
| 0.0581 | 18.7961 | 7800 | 0.1493 | 0.1351 |
| 0.0532 | 19.0362 | 7900 | 0.1521 | 0.1291 |
| 0.051 | 19.2774 | 8000 | 0.1488 | 0.1288 |
| 0.0484 | 19.5187 | 8100 | 0.1726 | 0.1419 |
| 0.0538 | 19.7600 | 8200 | 0.1431 | 0.1301 |
| 0.0531 | 20.0 | 8300 | 0.1652 | 0.1449 |
| 0.0519 | 20.2413 | 8400 | 0.1412 | 0.1338 |
| 0.0532 | 20.4825 | 8500 | 0.1352 | 0.1299 |
| 0.1488 | 20.7238 | 8600 | 0.1227 | 0.1274 |
| 0.057 | 20.9650 | 8700 | 0.1184 | 0.1257 |
| 0.0578 | 21.2051 | 8800 | 0.1349 | 0.1322 |
| 0.0561 | 21.4463 | 8900 | 0.1318 | 0.1332 |
| 0.0425 | 21.6876 | 9000 | 0.1089 | 0.1212 |
| 0.0449 | 21.9288 | 9100 | 0.1254 | 0.1240 |
| 0.0344 | 22.1689 | 9200 | 0.1309 | 0.1265 |
| 0.0416 | 22.4101 | 9300 | 0.1287 | 0.1221 |
| 0.0399 | 22.6514 | 9400 | 0.1206 | 0.1275 |
| 0.045 | 22.8926 | 9500 | 0.1187 | 0.1237 |
| 0.046 | 23.1327 | 9600 | 0.1289 | 0.1255 |
| 0.0409 | 23.3739 | 9700 | 0.1276 | 0.1241 |
| 0.0394 | 23.6152 | 9800 | 0.1127 | 0.1270 |
| 0.0419 | 23.8565 | 9900 | 0.1043 | 0.1163 |
| 0.0388 | 24.0965 | 10000 | 0.1357 | 0.1274 |
| 0.0392 | 24.3378 | 10100 | 0.1453 | 0.1308 |
| 0.0349 | 24.5790 | 10200 | 0.1138 | 0.1198 |
| 0.0327 | 24.8203 | 10300 | 0.1578 | 0.1238 |
| 0.0294 | 25.0603 | 10400 | 0.1264 | 0.1194 |
| 0.0348 | 25.3016 | 10500 | 0.1187 | 0.1222 |
| 0.0405 | 25.5428 | 10600 | 0.1282 | 0.1202 |
| 0.0325 | 25.7841 | 10700 | 0.1249 | 0.1218 |
| 0.0295 | 26.0241 | 10800 | 0.1238 | 0.1183 |
| 0.0299 | 26.2654 | 10900 | 0.1371 | 0.1219 |
| 0.0389 | 26.5066 | 11000 | 0.1037 | 0.1165 |
| 0.0295 | 26.7479 | 11100 | 0.1100 | 0.1198 |
| 0.0258 | 26.9891 | 11200 | 0.1111 | 0.1238 |
| 0.0312 | 27.2292 | 11300 | 0.1099 | 0.1204 |
| 0.0339 | 27.4704 | 11400 | 0.1150 | 0.1195 |
| 0.0262 | 27.7117 | 11500 | 0.1239 | 0.1162 |
| 0.0301 | 27.9530 | 11600 | 0.1177 | 0.1174 |
| 0.0296 | 28.1930 | 11700 | 0.1052 | 0.1143 |
| 0.0277 | 28.4343 | 11800 | 0.1110 | 0.1193 |
| 0.0301 | 28.6755 | 11900 | 0.1184 | 0.1192 |
| 0.027 | 28.9168 | 12000 | 0.1104 | 0.1187 |
| 0.0242 | 29.1568 | 12100 | 0.1301 | 0.1221 |
| 0.0254 | 29.3981 | 12200 | 0.1211 | 0.1202 |
| 0.0285 | 29.6393 | 12300 | 0.1130 | 0.1170 |
| 0.0252 | 29.8806 | 12400 | 0.1210 | 0.1154 |
| 0.0213 | 30.1206 | 12500 | 0.1146 | 0.1131 |
| 0.0233 | 30.3619 | 12600 | 0.1109 | 0.1141 |
| 0.0227 | 30.6031 | 12700 | 0.1187 | 0.1193 |
| 0.0259 | 30.8444 | 12800 | 0.1108 | 0.1145 |
| 0.0248 | 31.0844 | 12900 | 0.1087 | 0.1127 |
| 0.0234 | 31.3257 | 13000 | 0.1069 | 0.1077 |
| 0.0223 | 31.5669 | 13100 | 0.1057 | 0.1072 |
| 0.0246 | 31.8082 | 13200 | 0.0996 | 0.1095 |
| 0.0214 | 32.0483 | 13300 | 0.1174 | 0.1167 |
| 0.0207 | 32.2895 | 13400 | 0.1116 | 0.1097 |
| 0.0211 | 32.5308 | 13500 | 0.1287 | 0.1188 |
| 0.0214 | 32.7720 | 13600 | 0.1132 | 0.1115 |
| 0.0217 | 33.0121 | 13700 | 0.1066 | 0.1085 |
| 0.0199 | 33.2533 | 13800 | 0.0933 | 0.1055 |
| 0.02 | 33.4946 | 13900 | 0.1045 | 0.1095 |
| 0.0204 | 33.7358 | 14000 | 0.1040 | 0.1110 |
| 0.0209 | 33.9771 | 14100 | 0.1061 | 0.1083 |
| 0.0167 | 34.2171 | 14200 | 0.1059 | 0.1104 |
| 0.0153 | 34.4584 | 14300 | 0.0952 | 0.1067 |
| 0.0151 | 34.6996 | 14400 | 0.1122 | 0.1115 |
| 0.0216 | 34.9409 | 14500 | 0.0988 | 0.1098 |
| 0.0265 | 35.1809 | 14600 | 0.1086 | 0.1165 |
| 0.0153 | 35.4222 | 14700 | 0.1135 | 0.1085 |
| 0.0156 | 35.6634 | 14800 | 0.0998 | 0.1095 |
| 0.019 | 35.9047 | 14900 | 0.1104 | 0.1172 |
| 0.0163 | 36.1448 | 15000 | 0.1249 | 0.1139 |
| 0.0156 | 36.3860 | 15100 | 0.0988 | 0.1096 |
| 0.0186 | 36.6273 | 15200 | 0.1015 | 0.1139 |
| 0.0239 | 36.8685 | 15300 | 0.1078 | 0.1145 |
| 0.0692 | 37.1086 | 15400 | 0.1050 | 0.1175 |
| 0.0128 | 37.3498 | 15500 | 0.1036 | 0.1134 |
| 0.015 | 37.5911 | 15600 | 0.0967 | 0.1114 |
| 0.0151 | 37.8323 | 15700 | 0.1022 | 0.1122 |
| 0.0169 | 38.0724 | 15800 | 0.1157 | 0.1136 |
| 0.0168 | 38.3136 | 15900 | 0.0970 | 0.1129 |
| 0.015 | 38.5549 | 16000 | 0.1116 | 0.1136 |
| 0.0121 | 38.7961 | 16100 | 0.0970 | 0.1099 |
| 0.0189 | 39.0362 | 16200 | 0.1033 | 0.1153 |
| 0.015 | 39.2774 | 16300 | 0.1044 | 0.1143 |
| 0.0112 | 39.5187 | 16400 | 0.0963 | 0.1112 |
| 0.0116 | 39.7600 | 16500 | 0.0934 | 0.1106 |
| 0.0132 | 40.0 | 16600 | 0.0914 | 0.1082 |
| 0.0104 | 40.2413 | 16700 | 0.1099 | 0.1138 |
| 0.0108 | 40.4825 | 16800 | 0.1020 | 0.1120 |
| 0.0109 | 40.7238 | 16900 | 0.0995 | 0.1130 |
| 0.0154 | 40.9650 | 17000 | 0.0989 | 0.1121 |
| 0.0117 | 41.2051 | 17100 | 0.1113 | 0.1146 |
| 0.0123 | 41.4463 | 17200 | 0.0934 | 0.1074 |
| 0.0097 | 41.6876 | 17300 | 0.0829 | 0.1052 |
| 0.0141 | 41.9288 | 17400 | 0.0952 | 0.1060 |
| 0.0122 | 42.1689 | 17500 | 0.0914 | 0.1050 |
| 0.0104 | 42.4101 | 17600 | 0.0910 | 0.1064 |
| 0.0113 | 42.6514 | 17700 | 0.0959 | 0.1096 |
| 0.0107 | 42.8926 | 17800 | 0.1054 | 0.1073 |
| 0.0086 | 43.1327 | 17900 | 0.0956 | 0.1056 |
| 0.0106 | 43.3739 | 18000 | 0.0959 | 0.1080 |
| 0.011 | 43.6152 | 18100 | 0.0970 | 0.1071 |
| 0.0087 | 43.8565 | 18200 | 0.1060 | 0.1064 |
| 0.0089 | 44.0965 | 18300 | 0.1080 | 0.1054 |
| 0.0109 | 44.3378 | 18400 | 0.1072 | 0.1061 |
| 0.0104 | 44.5790 | 18500 | 0.0965 | 0.1047 |
| 0.0121 | 44.8203 | 18600 | 0.0942 | 0.1044 |
| 0.0056 | 45.0603 | 18700 | 0.0941 | 0.1034 |
| 0.0079 | 45.3016 | 18800 | 0.0920 | 0.1037 |
| 0.0072 | 45.5428 | 18900 | 0.0960 | 0.1049 |
| 0.0059 | 45.7841 | 19000 | 0.0977 | 0.1044 |
| 0.0082 | 46.0241 | 19100 | 0.0954 | 0.1053 |
| 0.008 | 46.2654 | 19200 | 0.0993 | 0.1063 |
| 0.0092 | 46.5066 | 19300 | 0.0984 | 0.1055 |
| 0.0064 | 46.7479 | 19400 | 0.0960 | 0.1051 |
| 0.0068 | 46.9891 | 19500 | 0.0962 | 0.1059 |
| 0.0061 | 47.2292 | 19600 | 0.1002 | 0.1071 |
| 0.0059 | 47.4704 | 19700 | 0.0964 | 0.1069 |
| 0.0067 | 47.7117 | 19800 | 0.0947 | 0.1064 |
| 0.0054 | 47.9530 | 19900 | 0.0976 | 0.1061 |
| 0.0077 | 48.1930 | 20000 | 0.1005 | 0.1060 |
| 0.008 | 48.4343 | 20100 | 0.1010 | 0.1060 |
| 0.0107 | 48.6755 | 20200 | 0.0991 | 0.1060 |
| 0.0054 | 48.9168 | 20300 | 0.0979 | 0.1059 |
| 0.0051 | 49.1568 | 20400 | 0.0978 | 0.1049 |
| 0.0046 | 49.3981 | 20500 | 0.0964 | 0.1059 |
| 0.0078 | 49.6393 | 20600 | 0.0960 | 0.1049 |
| 0.0056 | 49.8806 | 20700 | 0.0962 | 0.1047 |
Framework versions
- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 2
Model tree for minhtien2405/vovinam-wav2vec2-base-vi-160h-finetuned
Base model
khanhld/wav2vec2-base-vietnamese-160h