minoosh's picture
End of training
b640e05
metadata
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: AST-finetuned-on-shEMO_speech
    results: []

AST-finetuned-on-shEMO_speech

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6988
  • Accuracy: 0.7967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8657 1.0 75 0.7066 0.7867
0.6951 2.0 150 0.6622 0.7567
0.3368 3.0 225 0.5851 0.8433
0.1414 4.0 300 0.7233 0.79
0.1011 5.0 375 0.8763 0.7967
0.0438 6.0 450 0.9009 0.8067
0.0108 7.0 525 1.0540 0.83
0.0033 8.0 600 1.0177 0.81
0.0003 9.0 675 1.1074 0.84
0.0113 10.0 750 1.1107 0.8433
0.0002 11.0 825 1.1273 0.8367
0.0001 12.0 900 1.1634 0.8333
0.0001 13.0 975 1.1502 0.84
0.0045 14.0 1050 1.1541 0.84
0.0039 15.0 1125 1.1550 0.84

Framework versions

  • Transformers 4.34.1
  • Pytorch 1.12.0+cu116
  • Datasets 2.14.6
  • Tokenizers 0.14.1