|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-reg-crossencoder-mae |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-reg-crossencoder-mae |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2200 |
|
- Mse: 0.0781 |
|
- Mae: 0.2200 |
|
- Pearson Corr: 0.3461 |
|
- Spearman Corr: 0.3129 |
|
- Cosine Sim: 0.9050 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------------:|:-------------:|:----------:| |
|
| 0.2886 | 1.0 | 41 | 0.2213 | 0.0742 | 0.2213 | 0.0650 | 0.0604 | 0.9037 | |
|
| 0.2582 | 2.0 | 82 | 0.2223 | 0.0714 | 0.2223 | 0.1319 | 0.1417 | 0.9052 | |
|
| 0.2615 | 3.0 | 123 | 0.2094 | 0.0670 | 0.2094 | 0.2859 | 0.2753 | 0.9113 | |
|
| 0.2247 | 4.0 | 164 | 0.2152 | 0.0733 | 0.2152 | 0.3126 | 0.2705 | 0.9075 | |
|
| 0.1942 | 5.0 | 205 | 0.2363 | 0.0890 | 0.2363 | 0.3631 | 0.3424 | 0.9112 | |
|
| 0.1758 | 6.0 | 246 | 0.2193 | 0.0776 | 0.2193 | 0.3528 | 0.3247 | 0.9106 | |
|
| 0.166 | 7.0 | 287 | 0.2200 | 0.0781 | 0.2200 | 0.3461 | 0.3129 | 0.9050 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|