|
--- |
|
base_model: openai/whisper-medium |
|
datasets: |
|
- facebook/voxpopuli |
|
language: |
|
- it |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Medium |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: facebook/voxpopuli |
|
type: facebook/voxpopuli |
|
config: default |
|
split: None |
|
args: default |
|
metrics: |
|
- type: wer |
|
value: 10.9375 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Medium |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the facebook/voxpopuli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4874 |
|
- Wer: 10.9375 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 2.2174 | 0.5714 | 100 | 1.9102 | 49.4792 | |
|
| 0.2353 | 1.1429 | 200 | 0.3485 | 30.7292 | |
|
| 0.1668 | 1.7143 | 300 | 0.7634 | 21.875 | |
|
| 0.118 | 2.2857 | 400 | 0.6914 | 11.9792 | |
|
| 0.0931 | 2.8571 | 500 | 0.5523 | 15.1042 | |
|
| 0.0851 | 3.4286 | 600 | 0.6818 | 13.0208 | |
|
| 0.0751 | 4.0 | 700 | 0.6348 | 11.9792 | |
|
| 0.066 | 4.5714 | 800 | 0.6576 | 11.9792 | |
|
| 0.0604 | 5.1429 | 900 | 0.4125 | 10.9375 | |
|
| 0.0564 | 5.7143 | 1000 | 0.6815 | 10.9375 | |
|
| 0.0499 | 6.2857 | 1100 | 0.4861 | 11.4583 | |
|
| 0.0472 | 6.8571 | 1200 | 0.4874 | 10.9375 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.43.1 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |