reach-vb's picture
reach-vb HF staff
Add Transformers tag for snippets and metrics!
d1c8443 verified
|
raw
history blame
8.23 kB
metadata
language:
  - en
  - fr
  - de
  - es
  - it
  - pt
  - zh
  - ja
  - ru
  - ko
license: apache-2.0
library_name: vllm
base_model:
  - mistralai/Mistral-Small-24B-Base-2501
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
tags:
  - transformers

Model Card for Mistral-Small-24B-Instruct-2501

Mistral Small 3 ( 2501 ) sets a new benchmark in the "small" Large Language Models category below 70B, boasting 24B parameters and achieving state-of-the-art capabilities comparable to larger models!
This model is an instruction-fine-tuned version of the base model: Mistral-Small-24B-Base-2501.

Mistral Small can be deployed locally and is exceptionally "knowledge-dense", fitting in a single RTX 4090 or a 32GB RAM MacBook once quantized.
Perfect for:

  • Fast response conversational agents.
  • Low latency function calling.
  • Subject matter experts via fine-tuning.
  • Local inference for hobbyists and organizations handling sensitive data.

For enterprises that need specialized capabilities (increased context, particular modalities, domain specific knowledge, etc.), we will be releasing commercial models beyond what Mistral AI contributes to the community.

This release demonstrates our commitment to open source, serving as a strong base model.

Learn more about Mistral Small in our blog post.

Key Features

  • Multilingual: Supports dozens of languages, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch, and Polish.
  • Agent-Centric: Offers best-in-class agentic capabilities with native function calling and JSON outputting.
  • Advanced Reasoning: State-of-the-art conversational and reasoning capabilities.
  • Apache 2.0 License: Open license allowing usage and modification for both commercial and non-commercial purposes.
  • Context Window: A 32k context window.
  • System Prompt: Maintains strong adherence and support for system prompts.
  • Tokenizer: Utilizes a Tekken tokenizer with a 131k vocabulary size.

Basic Instruct Template (V7-Tekken)

<s>[SYSTEM_PROMPT]<system prompt>[/SYSTEM_PROMPT][INST]<user message>[/INST]<assistant response></s>[INST]<user message>[/INST]

<system_prompt>, <user message> and <assistant response> are placeholders.

Please make sure to use mistral-common as the source of truth

Usage

The model can be used with the following frameworks;

vLLM

We recommend using this model with the vLLM library to implement production-ready inference pipelines.

Note: We recommond using a relatively low temperature, such as temperature=0.15.

Installation

Make sure you install vLLM >= 0.6.4:

pip install --upgrade vllm

Also make sure you have mistral_common >= 1.5.2 installed:

pip install --upgrade mistral_common

You can also make use of a ready-to-go docker image or on the docker hub.

Server

We recommand that you use Mistral-Small-Instruct-2501 in a server/client setting.

  1. Spin up a server:
vllm serve mistralai/Mistral-Small-24B-Instruct-2501 --tokenizer_mode mistral --config_format mistral --load_format mistral --enable-auto-tool-choice

Note: Running Mistral-Small-Instruct-2501 on GPU requires 60 GB of GPU RAM.

  1. To ping the client you can use a simple Python snippet.
import requests
import json
from datetime import datetime, timedelta

url = "http://<your-server>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}

model = "mistralai/Mistral-Small-24B-Instruct-2501"

messages = [
    {
        "role": "system",
        "content": "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
    },
    {
        "role": "user",
        "content": "Give me 5 non-formal ways to say 'See you later' in French."
    },
]

data = {"model": model, "messages": messages}

response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json()["choices"][0]["message"]["content"])

# Sure, here are five non-formal ways to say "See you later" in French:
#
# 1. À plus tard
# 2. À plus
# 3. Salut
# 4. À toute
# 5. Bisous
#
# ```
#  /\_/\
# ( o.o )
#  > ^ <
# ```

Offline

from vllm import LLM
from vllm.sampling_params import SamplingParams
from datetime import datetime, timedelta

SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."

user_prompt = "Give me 5 non-formal ways to say 'See you later' in French."

messages = [
    {
        "role": "system",
        "content": SYSTEM_PROMPT
    },
    {
        "role": "user",
        "content": user_prompt
    },
]

# note that running this model on GPU requires over 60 GB of GPU RAM
llm = LLM(model=model_name, tokenizer_mode="mistral", tensor_parallel_size=8)

sampling_params = SamplingParams(max_tokens=512, temperature=0.15)
outputs = llm.chat(messages, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)
# Sure, here are five non-formal ways to say "See you later" in French:
#
# 1. À plus tard
# 2. À plus
# 3. Salut
# 4. À toute
# 5. Bisous
#
# ```
#  /\_/\
# ( o.o )
#  > ^ <
# ```

Transformers

If you want to use Hugging Face transformers to generate text, you can do something like this.

from transformers import pipeline

messages = [
    {"role": "system", "content": "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."},
    {"role": "user", "content": "Give me 5 non-formal ways to say 'See you later' in French."},
]
chatbot = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Instruct-2501", max_new_tokens=256, temperature=0.15)
chatbot(messages)

Ollama

Ollama can run this model locally on MacOS, Windows and Linux.

ollama run mistral-small

4-bit quantization (aliased to default):

ollama run mistral-small:24b-instruct-2501-q4_K_M

8-bit quantization:

ollama run mistral-small:24b-instruct-2501-q8_0

FP16:

ollama run mistral-small:24b-instruct-2501-fp16

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Diogo Costa, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall