metadata
license: apache-2.0
Pixtral-12B-0910
We still need to validate official evaluations with the below usage example.
...TODO
Usage
We recommend using Pixtral with the vLLM library.
Important: Make sure you have installed vLLM from source - more specifically make sure you have installed this commit (TODO).
Also make sure you have mistral_common >= 1.4.0
installed:
pip install --upgrade mistral_common
Simple Example
from vllm import LLM
from vllm.sampling_params import SamplingParams
model_name = "mistralai/Pixtral-12B-2409"
sampling_params = SamplingParams(max_tokens=8192)
llm = LLM(model=model_name, tokenizer_mode="mistral")
prompt = "Describe this image in one sentence."
image_url = "https://picsum.photos/id/237/200/300"
messages = [
{
"role": "user",
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": image_url}}]
},
]
outputs = llm.chat(messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
Advanced Example
You can also pass multiple images per message and/or pass multi-turn conversations
from vllm import LLM
from vllm.sampling_params import SamplingParams
model_name = "mistralai/Pixtral-12B-2409"
max_img_per_msg = 5
max_tokens_per_img = 4096
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
llm = LLM(model=model_name, tokenizer_mode="mistral", limit_mm_per_prompt={"image": max_img_per_msg}, max_num_batched_tokens=max_img_per_msg * max_tokens_per_img)
prompt = "Describe the following image."
url_1 = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
url_2 = "https://picsum.photos/seed/picsum/200/300"
url_3 = "https://picsum.photos/id/32/512/512"
messages = [
{
"role": "user",
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": url_1}}, {"type": "image_url", "image_url": {"url": url_2}}],
},
{
"role": "assistant",
"content": "The images shows nature.",
},
{
"role": "user",
"content": "More details please and answer only in French!."
},
{
"role": "user",
"content": [{"type": "image_url", "image_url": {"url": url_3}}],
}
]
outputs = llm.chat(messages=messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
Server
You can also use pixtral in a server/client setting.
- Spin up a server:
vllm serve mistralai/Pixtral-12B-2409 --tokenizer_mode mistral --limit_mm_per_prompt 'image=4' --max_num_batched_tokens 16384
- And ping the client:
curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer token' \
--data '{
"model": "mistralai/Pixtral-12B-2409",
"messages": [
{
"role": "user",
"content": [
{"type" : "text", "text": "Describe this image in detail please."},
{"type": "image_url", "image_url": {"url": "https://s3.amazonaws.com/cms.ipressroom.com/338/files/201808/5b894ee1a138352221103195_A680%7Ejogging-edit/A680%7Ejogging-edit_hero.jpg"}},
{"type" : "text", "text": "and this one as well. Answer in French."},
{"type": "image_url", "image_url": {"url": "https://www.wolframcloud.com/obj/resourcesystem/images/a0e/a0ee3983-46c6-4c92-b85d-059044639928/6af8cfb971db031b.png"}}
]
}
]
}'