e5-large-mnli-anli / README.md
mjwong's picture
Update README.md
c45c1a2
|
raw
history blame
No virus
3.72 kB
metadata
datasets:
  - glue
  - anli
model-index:
  - name: e5-large-mnli-anli
    results: []
pipeline_tag: zero-shot-classification
language:
  - en
license: mit

e5-large-mnli-anli

This model is a fine-tuned version of intfloat/e5-large on the glue (mnli) and anli dataset.

Model description

Text Embeddings by Weakly-Supervised Contrastive Pre-training. Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022

How to use the model

With the zero-shot classification pipeline

The model can be loaded with the zero-shot-classification pipeline like so:

from transformers import pipeline
classifier = pipeline("zero-shot-classification",
                      model="mjwong/e5-large-mnli-anli")

You can then use this pipeline to classify sequences into any of the class names you specify.

sequence_to_classify = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(sequence_to_classify, candidate_labels)

If more than one candidate label can be correct, pass multi_class=True to calculate each class independently:

candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
classifier(sequence_to_classify, candidate_labels, multi_class=True)

With manual PyTorch

The model can also be applied on NLI tasks like so:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# device = "cuda:0" or "cpu"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_name = "mjwong/e5-large-mnli-anli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

premise = "But I thought you'd sworn off coffee."
hypothesis = "I thought that you vowed to drink more coffee."

input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device))
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
print(prediction)

Eval results

The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.

Datasets mnli_dev_m mnli_dev_mm anli_test_r1 anli_test_r2 anli_test_r3
e5-base-mnli 0.840 0.839 0.231 0.285 0.309
e5-base-v2-mnli 0.844 0.838 0.253 0.288 0.301
e5-large-mnli 0.868 0.869 0.301 0.296 0.294
e5-large-v2-mnli 0.875 0.876 0.354 0.298 0.313
e5-large-unsupervised-mnli 0.865 0.867 0.314 0.285 0.303
e5-large-mnli-anli 0.843 0.848 0.646 0.484 0.458
e5-large-unsupervised-mnli-anli 0.836 0.842 0.634 0.481 0.478

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.12.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.12.1