Adding Evaluation Results
#10
by
leaderboard-pr-bot
- opened
README.md
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
-
license_name: microsoft-research-license
|
4 |
-
license_link: https://huggingface.co/WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE
|
5 |
tags:
|
6 |
- moe
|
7 |
- merge
|
@@ -11,6 +9,111 @@ tags:
|
|
11 |
- beowolx/CodeNinja-1.0-OpenChat-7B
|
12 |
- maywell/PiVoT-0.1-Starling-LM-RP
|
13 |
- WizardLM/WizardMath-7B-V1.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
![](https://i.imgur.com/vq1QHEA.jpg)
|
@@ -181,4 +284,17 @@ print(outputs[0]["generated_text"])
|
|
181 |
|
182 |
Output:
|
183 |
|
184 |
-
> A Mixture of Experts (ME) is a machine learning technique that combines multiple expert models to make predictions or decisions. Each expert model is specialized in a different aspect of the problem, and their outputs are combined to produce a more accurate and robust solution. This approach allows the model to leverage the strengths of individual experts and compensate for their weaknesses, improving overall performance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: other
|
|
|
|
|
3 |
tags:
|
4 |
- moe
|
5 |
- merge
|
|
|
9 |
- beowolx/CodeNinja-1.0-OpenChat-7B
|
10 |
- maywell/PiVoT-0.1-Starling-LM-RP
|
11 |
- WizardLM/WizardMath-7B-V1.1
|
12 |
+
license_name: microsoft-research-license
|
13 |
+
license_link: https://huggingface.co/WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE
|
14 |
+
model-index:
|
15 |
+
- name: Beyonder-4x7B-v2
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: text-generation
|
19 |
+
name: Text Generation
|
20 |
+
dataset:
|
21 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
22 |
+
type: ai2_arc
|
23 |
+
config: ARC-Challenge
|
24 |
+
split: test
|
25 |
+
args:
|
26 |
+
num_few_shot: 25
|
27 |
+
metrics:
|
28 |
+
- type: acc_norm
|
29 |
+
value: 68.77
|
30 |
+
name: normalized accuracy
|
31 |
+
source:
|
32 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
33 |
+
name: Open LLM Leaderboard
|
34 |
+
- task:
|
35 |
+
type: text-generation
|
36 |
+
name: Text Generation
|
37 |
+
dataset:
|
38 |
+
name: HellaSwag (10-Shot)
|
39 |
+
type: hellaswag
|
40 |
+
split: validation
|
41 |
+
args:
|
42 |
+
num_few_shot: 10
|
43 |
+
metrics:
|
44 |
+
- type: acc_norm
|
45 |
+
value: 86.8
|
46 |
+
name: normalized accuracy
|
47 |
+
source:
|
48 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
49 |
+
name: Open LLM Leaderboard
|
50 |
+
- task:
|
51 |
+
type: text-generation
|
52 |
+
name: Text Generation
|
53 |
+
dataset:
|
54 |
+
name: MMLU (5-Shot)
|
55 |
+
type: cais/mmlu
|
56 |
+
config: all
|
57 |
+
split: test
|
58 |
+
args:
|
59 |
+
num_few_shot: 5
|
60 |
+
metrics:
|
61 |
+
- type: acc
|
62 |
+
value: 65.1
|
63 |
+
name: accuracy
|
64 |
+
source:
|
65 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
66 |
+
name: Open LLM Leaderboard
|
67 |
+
- task:
|
68 |
+
type: text-generation
|
69 |
+
name: Text Generation
|
70 |
+
dataset:
|
71 |
+
name: TruthfulQA (0-shot)
|
72 |
+
type: truthful_qa
|
73 |
+
config: multiple_choice
|
74 |
+
split: validation
|
75 |
+
args:
|
76 |
+
num_few_shot: 0
|
77 |
+
metrics:
|
78 |
+
- type: mc2
|
79 |
+
value: 60.68
|
80 |
+
source:
|
81 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
82 |
+
name: Open LLM Leaderboard
|
83 |
+
- task:
|
84 |
+
type: text-generation
|
85 |
+
name: Text Generation
|
86 |
+
dataset:
|
87 |
+
name: Winogrande (5-shot)
|
88 |
+
type: winogrande
|
89 |
+
config: winogrande_xl
|
90 |
+
split: validation
|
91 |
+
args:
|
92 |
+
num_few_shot: 5
|
93 |
+
metrics:
|
94 |
+
- type: acc
|
95 |
+
value: 80.9
|
96 |
+
name: accuracy
|
97 |
+
source:
|
98 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
99 |
+
name: Open LLM Leaderboard
|
100 |
+
- task:
|
101 |
+
type: text-generation
|
102 |
+
name: Text Generation
|
103 |
+
dataset:
|
104 |
+
name: GSM8k (5-shot)
|
105 |
+
type: gsm8k
|
106 |
+
config: main
|
107 |
+
split: test
|
108 |
+
args:
|
109 |
+
num_few_shot: 5
|
110 |
+
metrics:
|
111 |
+
- type: acc
|
112 |
+
value: 71.72
|
113 |
+
name: accuracy
|
114 |
+
source:
|
115 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
|
116 |
+
name: Open LLM Leaderboard
|
117 |
---
|
118 |
|
119 |
![](https://i.imgur.com/vq1QHEA.jpg)
|
|
|
284 |
|
285 |
Output:
|
286 |
|
287 |
+
> A Mixture of Experts (ME) is a machine learning technique that combines multiple expert models to make predictions or decisions. Each expert model is specialized in a different aspect of the problem, and their outputs are combined to produce a more accurate and robust solution. This approach allows the model to leverage the strengths of individual experts and compensate for their weaknesses, improving overall performance.
|
288 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
289 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Beyonder-4x7B-v2)
|
290 |
+
|
291 |
+
| Metric |Value|
|
292 |
+
|---------------------------------|----:|
|
293 |
+
|Avg. |72.33|
|
294 |
+
|AI2 Reasoning Challenge (25-Shot)|68.77|
|
295 |
+
|HellaSwag (10-Shot) |86.80|
|
296 |
+
|MMLU (5-Shot) |65.10|
|
297 |
+
|TruthfulQA (0-shot) |60.68|
|
298 |
+
|Winogrande (5-shot) |80.90|
|
299 |
+
|GSM8k (5-shot) |71.72|
|
300 |
+
|