File size: 3,170 Bytes
5d0bf70
 
7b17ba0
5d0bf70
 
7b17ba0
5d0bf70
7b17ba0
5d0bf70
 
 
44f439e
 
5d0bf70
7b17ba0
 
5d0bf70
7b17ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f439e
 
 
7b17ba0
44f439e
 
 
 
 
 
 
 
 
 
 
 
 
5d0bf70
 
 
 
 
 
7b17ba0
 
 
5d0bf70
44f439e
 
7b17ba0
44f439e
 
7b17ba0
 
5d0bf70
 
 
 
 
7b17ba0
 
44f439e
 
 
 
 
5d0bf70
 
 
 
7b17ba0
5d0bf70
7b17ba0
5d0bf70
7b17ba0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: ai21labs/Jamba-v0.1
model-index:
- name: out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml

base_model: ai21labs/Jamba-v0.1
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: chargoddard/Open-Platypus-Chat
    type: sharegpt
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

use_wandb: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: Jambatypus-v0.1
wandb_log_model:

adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true

low_cpu_mem_usage: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 4
save_total_limit: 2
debug:
deepspeed:
weight_decay: 0.0
special_tokens:

```

</details><br>

# out

This model is a fine-tuned version of [ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9651

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6274        | 0.01  | 1    | 1.0298          |
| 0.4403        | 0.25  | 42   | 0.9768          |
| 0.4417        | 0.5   | 84   | 0.9675          |
| 0.4451        | 0.75  | 126  | 0.9652          |
| 0.4616        | 1.0   | 168  | 0.9651          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0