πŸ¦™πŸ’» CodeLlama

πŸ“ Article | πŸ’» Colab | πŸ“„ Script

CodeLlama-7b is a Llama 2 version of CodeAlpaca.

πŸ”§ Training

This model is based on the llama-2-7b-chat-hf model, fine-tuned using QLoRA on the mlabonne/CodeLlama-2-20k dataset. It was trained on an RTX 3090 and can be used for inference.

It was trained using this custom finetune_llama2.py script as follows:

python finetune_llama2.py --dataset_name=mlabonne/CodeLlama-2-20k --new_model=mlabonne/codellama-2-7b --bf16=True --learning_rate=2e-5

πŸ’» Usage

# pip install transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/codellama-2-7b"
prompt = "Write Python code to generate an array with all the numbers from 1 to 100"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    f'<s>[INST] {prompt} [/INST]',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=200,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

Ouput:

Here is a Python code to generate an array with all the numbers from 1 to 100:

β€…```
 numbers = []
 for i in range(1,101):
     numbers.append(i)
β€…```

This code generates an array with all the numbers from 1 to 100 in Python. It uses a loop that iterates over the range of numbers from 1 to 100, and for each number, it appends that number to the array 'numbers'. The variable 'numbers' is initialized to a list, and its length is set to 101 by using the range of numbers (0-99).

```## Training procedure


The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions

- PEFT 0.5.0.dev0

- PEFT 0.5.0.dev0
## Training procedure


The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Downloads last month
55
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for mlabonne/codellama-2-7b

Adapter
(1821)
this model
Quantizations
1 model

Dataset used to train mlabonne/codellama-2-7b

Collection including mlabonne/codellama-2-7b