π¦ Llama 2 Guanaco
Collection
Set of models fine-tuned using QLoRA on Google Colab with the Guanaco dataset.
β’
4 items
β’
Updated
π Article | π» Colab | π Script
This is a Llama-2-13b-chat-hf
model fine-tuned using QLoRA (4-bit precision) on the mlabonne/guanaco-llama2-1k
dataset, which is a subset of the timdettmers/openassistant-guanaco
.
It was trained on an RTX 3090. It is mainly designed for educational purposes, not for inference. Parameters:
max_seq_length = 2048
use_nested_quant = True
bnb_4bit_compute_dtype=bfloat16
lora_r=8
lora_alpha=16
lora_dropout=0.05
per_device_train_batch_size=2
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/llama-2-13b-miniguanaco"
prompt = "What is a large language model?"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'<s>[INST] {prompt} [/INST]',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")