PhoneLM
Collection
A highly capable and efficient small language model family
•
6 items
•
Updated
PhoneLM-0.5B-Instruct is a 0.5 billion parameter decoder-only language model.
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = 'mllmTeam/PhoneLM-0.5B-Instruct'
question = "Hello, who are you?"
prompt = [{"role": "user", "content": question}]
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
inp = tokenizer(input_text, return_tensors="pt")
inp = {k: v.to('cuda') for k, v in inp.items()}
out = model.generate(**inp,
max_length=256,
do_sample=True,
temperature=0.7,
top_p=0.7
)
text = tokenizer.decode(out[0], skip_special_tokens=True)
print(text)
PhoneLM 0.5B
models are auto-regressive language models based on the transformer decoder architecture.The model is a decoder-only transformer architecture with the following modifications:
Hidden Size | Layers | Heads | Sequence Length |
---|---|---|---|
1024 | 24 | 16 | 2048 |
@misc{yi2024phonelmanefficientcapablesmall,
title={PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training},
author={Rongjie Yi and Xiang Li and Weikai Xie and Zhenyan Lu and Chenghua Wang and Ao Zhou and Shangguang Wang and Xiwen Zhang and Mengwei Xu},
year={2024},
eprint={2411.05046},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.05046},
}
Base model
mllmTeam/PhoneLM-0.5B