Text Generation
MLX
Safetensors
English
falcon_mamba
conversational
8-bit precision
ybelkada's picture
2d5f1cf2bd87ebcf23f9635326508c7b4b33df3d42cc64dde1f4e82d02efab3c
1bfee59 verified
|
raw
history blame
1.16 kB
metadata
base_model: tiiuae/falcon-mamba-7b-instruct
datasets:
  - tiiuae/falcon-refinedweb
  - HuggingFaceFW/fineweb-edu
language:
  - en
license: other
license_name: falcon-mamba-7b-license
license_link: https://falconllm.tii.ae/falcon-mamba-7b-terms-and-conditions.html
pipeline_tag: text-generation
tags:
  - mlx
inference: true

mlx-community/falcon-mamba-7b-8bit-instruct

The Model mlx-community/falcon-mamba-7b-8bit-instruct was converted to MLX format from tiiuae/falcon-mamba-7b-instruct using mlx-lm version 0.19.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/falcon-mamba-7b-8bit-instruct")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)