bobtk's picture
e223a83b4c8d06758c1d0346e4266e240e83cbc5985a7132baa5dd9316554bec
73fb73f verified
|
raw
history blame
1.29 kB
metadata
base_model: google/gemma-2-2b-jpn-it
language:
  - ja
library_name: transformers
license: gemma
pipeline_tag: text-generation
tags:
  - conversational
  - mlx
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
  To access Gemma on Hugging Face, you’re required to review and agree to
  Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license

mlx-community/gemma-2-2b-jpn-it-8bit

The Model mlx-community/gemma-2-2b-jpn-it-8bit was converted to MLX format from google/gemma-2-2b-jpn-it using mlx-lm version 0.18.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/gemma-2-2b-jpn-it-8bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)