metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.77
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.7536
- Accuracy: 0.77
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2844 | 1.0 | 57 | 2.2655 | 0.24 |
2.1199 | 2.0 | 114 | 2.0507 | 0.48 |
1.7662 | 3.0 | 171 | 1.7611 | 0.56 |
1.5841 | 4.0 | 228 | 1.5132 | 0.68 |
1.3824 | 5.0 | 285 | 1.3399 | 0.67 |
1.2609 | 6.0 | 342 | 1.2268 | 0.72 |
1.0785 | 7.0 | 399 | 1.1935 | 0.7 |
1.0587 | 8.0 | 456 | 1.0674 | 0.7 |
0.9831 | 9.0 | 513 | 0.9904 | 0.74 |
0.9783 | 10.0 | 570 | 0.9502 | 0.73 |
0.829 | 11.0 | 627 | 0.9090 | 0.76 |
0.7314 | 12.0 | 684 | 0.8753 | 0.74 |
0.6674 | 13.0 | 741 | 0.8584 | 0.76 |
0.8236 | 14.0 | 798 | 0.8069 | 0.78 |
0.6861 | 15.0 | 855 | 0.7878 | 0.77 |
0.6585 | 16.0 | 912 | 0.7773 | 0.76 |
0.5389 | 17.0 | 969 | 0.7695 | 0.78 |
0.6257 | 18.0 | 1026 | 0.7907 | 0.76 |
0.546 | 19.0 | 1083 | 0.7648 | 0.77 |
0.6432 | 20.0 | 1140 | 0.7536 | 0.77 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0