mmcgovern574's picture
End of training
8f261fc
|
raw
history blame
3.54 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.81

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0178
  • Accuracy: 0.81

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2598 1.0 57 2.2140 0.34
1.8981 2.0 114 1.8262 0.56
1.4487 3.0 171 1.4402 0.64
1.1792 4.0 228 1.1520 0.69
0.9231 5.0 285 0.9415 0.75
0.7141 6.0 342 0.8904 0.73
0.5477 7.0 399 0.7395 0.78
0.3968 8.0 456 0.6359 0.81
0.4259 9.0 513 0.6345 0.8
0.2474 10.0 570 0.6333 0.8
0.1379 11.0 627 0.5374 0.83
0.0781 12.0 684 0.6484 0.84
0.0337 13.0 741 0.7072 0.84
0.0211 14.0 798 0.7023 0.83
0.0135 15.0 855 0.8199 0.83
0.0097 16.0 912 0.8009 0.83
0.065 17.0 969 0.8992 0.81
0.0067 18.0 1026 0.8628 0.82
0.0118 19.0 1083 0.6922 0.85
0.0052 20.0 1140 0.8001 0.84
0.077 21.0 1197 0.8324 0.82
0.0043 22.0 1254 0.9468 0.8
0.0039 23.0 1311 0.8866 0.8
0.0696 24.0 1368 0.9424 0.82
0.0037 25.0 1425 0.7855 0.81
0.0631 26.0 1482 0.7659 0.82
0.0592 27.0 1539 0.8605 0.83
0.0034 28.0 1596 0.9266 0.82
0.0032 29.0 1653 0.9831 0.82
0.0032 30.0 1710 1.0178 0.81

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0