mmillet's picture
update model card README.md
3af6c59
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      distilrubert-tiny-cased-conversational-v1_finetuned_emotion_experiment_augmented_anger_fear
    results: []

distilrubert-tiny-cased-conversational-v1_finetuned_emotion_experiment_augmented_anger_fear

This model is a fine-tuned version of DeepPavlov/distilrubert-tiny-cased-conversational-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3760
  • Accuracy: 0.8758
  • F1: 0.8750
  • Precision: 0.8753
  • Recall: 0.8758

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0001
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.2636 1.0 69 1.0914 0.6013 0.5599 0.5780 0.6013
1.029 2.0 138 0.9180 0.6514 0.6344 0.6356 0.6514
0.904 3.0 207 0.8235 0.6827 0.6588 0.6904 0.6827
0.8084 4.0 276 0.7272 0.7537 0.7477 0.7564 0.7537
0.7242 5.0 345 0.6435 0.7860 0.7841 0.7861 0.7860
0.6305 6.0 414 0.5543 0.8173 0.8156 0.8200 0.8173
0.562 7.0 483 0.4860 0.8392 0.8383 0.8411 0.8392
0.5042 8.0 552 0.4474 0.8528 0.8514 0.8546 0.8528
0.4535 9.0 621 0.4213 0.8580 0.8579 0.8590 0.8580
0.4338 10.0 690 0.4106 0.8591 0.8578 0.8605 0.8591
0.4026 11.0 759 0.4064 0.8622 0.8615 0.8632 0.8622
0.3861 12.0 828 0.3874 0.8737 0.8728 0.8733 0.8737
0.3709 13.0 897 0.3841 0.8706 0.8696 0.8701 0.8706
0.3592 14.0 966 0.3841 0.8716 0.8709 0.8714 0.8716
0.3475 15.0 1035 0.3834 0.8737 0.8728 0.8732 0.8737
0.3537 16.0 1104 0.3805 0.8727 0.8717 0.8722 0.8727
0.3317 17.0 1173 0.3775 0.8747 0.8739 0.8741 0.8747
0.323 18.0 1242 0.3759 0.8727 0.8718 0.8721 0.8727
0.3327 19.0 1311 0.3776 0.8758 0.8750 0.8756 0.8758
0.3339 20.0 1380 0.3760 0.8758 0.8750 0.8753 0.8758

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1