distilrubert-tiny-cased-conversational-v1_finetuned_empathy_classifier

This model is a fine-tuned version of DeepPavlov/distilrubert-tiny-cased-conversational-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6624
  • Accuracy: 0.6780
  • F1: 0.6878
  • Precision: 0.7175
  • Recall: 0.6780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0001
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.09 1.0 9 1.0661 0.4407 0.4464 0.6498 0.4407
1.0292 2.0 18 0.9658 0.5678 0.5223 0.5179 0.5678
0.942 3.0 27 0.8659 0.5932 0.5807 0.5723 0.5932
0.8614 4.0 36 0.7864 0.6186 0.5924 0.5879 0.6186
0.8002 5.0 45 0.7766 0.6017 0.5946 0.6086 0.6017
0.7633 6.0 54 0.7545 0.6186 0.6022 0.6151 0.6186
0.7249 7.0 63 0.7649 0.6356 0.6381 0.6921 0.6356
0.6687 8.0 72 0.7115 0.6695 0.6741 0.7154 0.6695
0.6426 9.0 81 0.6554 0.6864 0.6761 0.6807 0.6864
0.6144 10.0 90 0.6649 0.6864 0.6909 0.7172 0.6864
0.6252 11.0 99 0.8685 0.6186 0.6118 0.6880 0.6186
0.5988 12.0 108 0.6306 0.6949 0.7015 0.7107 0.6949
0.56 13.0 117 0.6919 0.6610 0.6662 0.7061 0.6610
0.5468 14.0 126 0.6563 0.6949 0.6980 0.7188 0.6949
0.5658 15.0 135 0.6351 0.6949 0.7048 0.7280 0.6949
0.5262 16.0 144 0.6902 0.6780 0.6821 0.7173 0.6780
0.4777 17.0 153 0.6237 0.6949 0.6981 0.7056 0.6949
0.4771 18.0 162 0.6688 0.6780 0.6799 0.7035 0.6780
0.4737 19.0 171 0.6482 0.6864 0.6957 0.7219 0.6864
0.5033 20.0 180 0.6624 0.6780 0.6878 0.7175 0.6780

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.