distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented

This model is a fine-tuned version of DeepPavlov/distilrubert-tiny-cased-conversational-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5908
  • Accuracy: 0.8653
  • F1: 0.8656
  • Precision: 0.8665
  • Recall: 0.8653

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.9172 1.0 69 0.5124 0.8246 0.8220 0.8271 0.8246
0.4709 2.0 138 0.4279 0.8528 0.8505 0.8588 0.8528
0.3194 3.0 207 0.3770 0.8737 0.8727 0.8740 0.8737
0.2459 4.0 276 0.3951 0.8685 0.8682 0.8692 0.8685
0.1824 5.0 345 0.4005 0.8831 0.8834 0.8841 0.8831
0.1515 6.0 414 0.4356 0.8800 0.8797 0.8801 0.8800
0.1274 7.0 483 0.4642 0.8727 0.8726 0.8731 0.8727
0.0833 8.0 552 0.5226 0.8633 0.8627 0.8631 0.8633
0.073 9.0 621 0.5327 0.8695 0.8686 0.8692 0.8695
0.0575 10.0 690 0.5908 0.8653 0.8656 0.8665 0.8653

Framework versions

  • Transformers 4.19.3
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.