Edit model card

flux-training-losercity-next

This is a LoRA derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

A person walking on a beach at night with a comet streaking across the sky, digital illustration, tranquil and relaxing, blue hour colors

Validation settings

  • CFG: 3.5
  • CFG Rescale: 0.0
  • Steps: 15
  • Sampler: None
  • Seed: 42
  • Resolution: 512

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
'
Prompt
A person walking on a beach at night with a comet streaking across the sky, digital illustration, tranquil and relaxing, blue hour colors
Negative Prompt
'

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 142
  • Training steps: 1000
  • Learning rate: 0.0001
  • Effective batch size: 6
    • Micro-batch size: 6
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Enabled
  • LoRA Rank: 64
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

jocelin512

  • Repeats: 0
  • Total number of images: 42
  • Total number of aspect buckets: 1
  • Resolution: 512 px
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'mmmss456/flux-training-losercity-next'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "A person walking on a beach at night with a comet streaking across the sky, digital illustration, tranquil and relaxing, blue hour colors"


pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=15,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=512,
    height=512,
    guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
28
Inference API
Examples

Model tree for mmmss456/flux-training-losercity-next

Adapter
(9282)
this model