mmomm25's picture
Model save
be416c2 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: vit-base-patch16-224-in21k-crack-detectorVITmain50epochs
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.9845817447858264
          - name: F1
            type: f1
            value:
              f1: 0.983869840492846
          - name: Precision
            type: precision
            value:
              precision: 0.9840346899184906
          - name: Recall
            type: recall
            value:
              recall: 0.9837409101507315

vit-base-patch16-224-in21k-crack-detectorVITmain50epochs

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0670
  • Accuracy: {'accuracy': 0.9845817447858264}
  • F1: {'f1': 0.983869840492846}
  • Precision: {'precision': 0.9840346899184906}
  • Recall: {'recall': 0.9837409101507315}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5622 1.0 1114 0.4109 {'accuracy': 0.8736263736263736} {'f1': 0.8653360894930927} {'precision': 0.8669392826942903} {'recall': 0.8641606609285752}
0.3696 2.0 2229 0.2493 {'accuracy': 0.9249271137026239} {'f1': 0.9207602119769538} {'precision': 0.9199949527238288} {'recall': 0.9219224853720074}
0.321 3.0 3344 0.1849 {'accuracy': 0.9410742318905584} {'f1': 0.9378351696354423} {'precision': 0.9376663800198108} {'recall': 0.9381803360170522}
0.3403 4.0 4459 0.1828 {'accuracy': 0.9382148463781117} {'f1': 0.9358183038090213} {'precision': 0.9351989305945833} {'recall': 0.9374254756058774}
0.2399 5.0 5573 0.1283 {'accuracy': 0.9539694998878673} {'f1': 0.9516195088904471} {'precision': 0.9525864748624857} {'recall': 0.9506985041313745}
0.2241 6.0 6688 0.1133 {'accuracy': 0.9605292666517157} {'f1': 0.9584812990028835} {'precision': 0.9604748305069212} {'recall': 0.9567171466267748}
0.2375 7.0 7803 0.1138 {'accuracy': 0.9638932496075353} {'f1': 0.9615520166695122} {'precision': 0.9628392910079963} {'recall': 0.9605232709871921}
0.1946 8.0 8918 0.0935 {'accuracy': 0.9682103610675039} {'f1': 0.9665726403969513} {'precision': 0.9677788948564787} {'recall': 0.9654971437363139}
0.1513 9.0 10032 0.0908 {'accuracy': 0.967593630858937} {'f1': 0.9657913168767667} {'precision': 0.9657840712769861} {'recall': 0.9659100270116727}
0.174 10.0 11147 0.0851 {'accuracy': 0.968490692980489} {'f1': 0.9669266120574112} {'precision': 0.9663934578407292} {'recall': 0.967857117571674}
0.1376 11.0 12262 0.0848 {'accuracy': 0.9692756223368468} {'f1': 0.9676560659554989} {'precision': 0.9695619317426214} {'recall': 0.9663476308224139}
0.1681 12.0 13377 0.0789 {'accuracy': 0.9743776631531733} {'f1': 0.9731609997444961} {'precision': 0.973142077383281} {'recall': 0.9733127731609976}
0.0998 13.0 14491 0.0750 {'accuracy': 0.9749943933617403} {'f1': 0.9737724540493713} {'precision': 0.9739505389554447} {'recall': 0.9737043141281871}
0.0968 14.0 15606 0.0837 {'accuracy': 0.9737609329446064} {'f1': 0.9722837146803432} {'precision': 0.9729901044455692} {'recall': 0.9716272189580044}
0.0841 15.0 16721 0.0689 {'accuracy': 0.9758914554832923} {'f1': 0.974522946671967} {'precision': 0.9749603470712005} {'recall': 0.974152667413215}
0.095 16.0 17836 0.0705 {'accuracy': 0.9762278537788742} {'f1': 0.9749967013469043} {'precision': 0.9757537211246345} {'recall': 0.9743092871293193}
0.1055 17.0 18950 0.0709 {'accuracy': 0.9753307916573223} {'f1': 0.9739943140941046} {'precision': 0.974174353159638} {'recall': 0.9738453333404872}
0.0644 18.0 20065 0.0738 {'accuracy': 0.9766763848396501} {'f1': 0.9755727076296268} {'precision': 0.9750313848950637} {'recall': 0.9764061086777133}
0.0839 19.0 21180 0.0691 {'accuracy': 0.9770127831352321} {'f1': 0.9758154254345139} {'precision': 0.9761822643915987} {'recall': 0.9754580155091578}
0.0752 20.0 22295 0.0737 {'accuracy': 0.9765642520744562} {'f1': 0.9753527993174993} {'precision': 0.9756389600577889} {'recall': 0.9751662665128649}
0.0777 21.0 23409 0.0594 {'accuracy': 0.9806010316214397} {'f1': 0.9797190165517261} {'precision': 0.9797694892510824} {'recall': 0.9796726937896714}
0.0753 22.0 24524 0.0673 {'accuracy': 0.9798721686476789} {'f1': 0.9791539833000008} {'precision': 0.9788167338624194} {'recall': 0.9796378458227846}
0.0564 23.0 25639 0.0670 {'accuracy': 0.9795357703520969} {'f1': 0.9785354369309488} {'precision': 0.9785832048371994} {'recall': 0.9785660480900121}
0.0721 24.0 26754 0.0685 {'accuracy': 0.9800964341780668} {'f1': 0.9791442297494849} {'precision': 0.9800176266790614} {'recall': 0.9783165451081763}
0.0637 25.0 27868 0.0683 {'accuracy': 0.9804888988562458} {'f1': 0.9793615860016096} {'precision': 0.9795645667425841} {'recall': 0.9792228423789527}
0.0845 26.0 28983 0.0687 {'accuracy': 0.9789190401435299} {'f1': 0.9779974196750578} {'precision': 0.9777924373303344} {'recall': 0.9782512107344294}
0.0443 27.0 30098 0.0660 {'accuracy': 0.9821148239515587} {'f1': 0.9812042927695707} {'precision': 0.9814603709525461} {'recall': 0.9810002705393822}
0.0544 28.0 31213 0.0778 {'accuracy': 0.9791993720565149} {'f1': 0.9782906130895705} {'precision': 0.9787040955747366} {'recall': 0.9779528847328706}
0.0537 29.0 32327 0.0674 {'accuracy': 0.9818344920385736} {'f1': 0.9811984625176332} {'precision': 0.9815390282130447} {'recall': 0.9809323144878648}
0.0493 30.0 33442 0.0701 {'accuracy': 0.9814980937429917} {'f1': 0.9805602239528695} {'precision': 0.9811340066266928} {'recall': 0.9800627824611866}
0.0522 31.0 34557 0.0710 {'accuracy': 0.9814980937429917} {'f1': 0.9808148178357844} {'precision': 0.9806080192879051} {'recall': 0.9810839837288577}
0.0159 32.0 35672 0.0724 {'accuracy': 0.9820026911863646} {'f1': 0.981223779316131} {'precision': 0.9815852582883647} {'recall': 0.9809265201908598}
0.0469 33.0 36786 0.0681 {'accuracy': 0.9827315541601256} {'f1': 0.982079515043356} {'precision': 0.9821689199854957} {'recall': 0.9820640757052289}
0.0469 34.0 37901 0.0678 {'accuracy': 0.9817223592733797} {'f1': 0.9809328125490557} {'precision': 0.9810701495429422} {'recall': 0.9808658173842284}
0.0385 35.0 39016 0.0634 {'accuracy': 0.9842453464902444} {'f1': 0.9836492800003742} {'precision': 0.9834341260971065} {'recall': 0.9838961344763829}
0.0386 36.0 40131 0.0687 {'accuracy': 0.9839089481946625} {'f1': 0.983239373896663} {'precision': 0.983372610840443} {'recall': 0.9831603310143421}
0.031 37.0 41245 0.0643 {'accuracy': 0.9837968154294685} {'f1': 0.9830873488066041} {'precision': 0.983437856778449} {'recall': 0.982767386441964}
0.0188 38.0 42360 0.0672 {'accuracy': 0.9840771473424534} {'f1': 0.9834705260789471} {'precision': 0.9841321671664716} {'recall': 0.9828412386527916}
0.0406 39.0 43475 0.0575 {'accuracy': 0.9851424086117964} {'f1': 0.9846872838275066} {'precision': 0.9845262374841439} {'recall': 0.9848621233267102}
0.0725 40.0 44590 0.0654 {'accuracy': 0.9843574792554385} {'f1': 0.9836921118378804} {'precision': 0.9838071847209022} {'recall': 0.9836248084545489}
0.0456 41.0 45704 0.0652 {'accuracy': 0.9837407490468715} {'f1': 0.9831247046792615} {'precision': 0.9830251647671387} {'recall': 0.9832768782292008}
0.0272 42.0 46819 0.0670 {'accuracy': 0.9835725498990805} {'f1': 0.9828974576921549} {'precision': 0.9829831457743452} {'recall': 0.9828424029347932}
0.021 43.0 47934 0.0633 {'accuracy': 0.9847499439336174} {'f1': 0.9841868836767669} {'precision': 0.9842200567065219} {'recall': 0.9841697876663609}
0.0231 44.0 49049 0.0724 {'accuracy': 0.9825072886297376} {'f1': 0.9819634359798524} {'precision': 0.9814536283421093} {'recall': 0.9825728366747504}
0.0419 45.0 50163 0.0652 {'accuracy': 0.9844135456380354} {'f1': 0.9837880332204787} {'precision': 0.9837369807084215} {'recall': 0.98386986331642}
0.0257 46.0 51278 0.0673 {'accuracy': 0.9842453464902444} {'f1': 0.98363705023352} {'precision': 0.9835068164678353} {'recall': 0.983839536345849}
0.0238 47.0 52393 0.0670 {'accuracy': 0.9850302758466024} {'f1': 0.9844204182477418} {'precision': 0.9846537574771261} {'recall': 0.9842341338822049}
0.0185 48.0 53508 0.0675 {'accuracy': 0.9844696120206324} {'f1': 0.9837444887203743} {'precision': 0.9840638645916341} {'recall': 0.983456407378361}
0.0196 49.0 54622 0.0664 {'accuracy': 0.9844135456380354} {'f1': 0.9837492030151856} {'precision': 0.9839059161676366} {'recall': 0.9836254408912738}
0.0352 49.97 55700 0.0670 {'accuracy': 0.9845817447858264} {'f1': 0.983869840492846} {'precision': 0.9840346899184906} {'recall': 0.9837409101507315}

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2