mmomm25's picture
Model save
10964b4 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      vit-base-patch16-224-in21k-laneclassifierasphaltconcrete-detectorVITmain50epochs
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 1
          - name: F1
            type: f1
            value:
              f1: 1
          - name: Precision
            type: precision
            value:
              precision: 1
          - name: Recall
            type: recall
            value:
              recall: 1

vit-base-patch16-224-in21k-laneclassifierasphaltconcrete-detectorVITmain50epochs

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0004
  • Accuracy: {'accuracy': 1.0}
  • F1: {'f1': 1.0}
  • Precision: {'precision': 1.0}
  • Recall: {'recall': 1.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0576 0.9933 111 0.0139 {'accuracy': 0.9977628635346756} {'f1': 0.9966709613995368} {'precision': 0.9985795454545454} {'recall': 0.9947916666666667}
0.0365 1.9955 223 0.0012 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0009 2.9978 335 0.0008 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0007 4.0 447 0.0007 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0006 4.9933 558 0.0005 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0005 5.9955 670 0.0005 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0005 6.9978 782 0.0004 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0005 7.9463 888 0.0004 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1