swahili / README.md
mn720's picture
End of training
dfc8297 verified
metadata
language:
  - sw
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_15_0
metrics:
  - wer
model-index:
  - name: swahili
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 15.0
          type: mozilla-foundation/common_voice_15_0
          config: lg
          split: validation
          args: 'config: lu, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 36.497908126611165

swahili

This model is a fine-tuned version of openai/whisper-small on the Common Voice 15.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3824
  • Wer: 36.4979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6697 0.1129 500 0.7159 64.0293
0.4719 0.2258 1000 0.5437 50.6878
0.4218 0.3388 1500 0.4773 45.0904
0.3896 0.4517 2000 0.4405 41.5501
0.3721 0.5646 2500 0.4173 39.9865
0.3386 0.6775 3000 0.3996 37.9094
0.3414 0.7904 3500 0.3883 37.3082
0.3078 0.9033 4000 0.3824 36.4979

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1