|
--- |
|
language: |
|
- ar |
|
|
|
datasets: |
|
- HARD |
|
|
|
tags: |
|
- HARD |
|
|
|
widget: |
|
- text: "جيد. المكان جميل وهاديء. كل شي جيد ونظيف" |
|
- text: "استغرب تقييم الفندق كخمس نجوم”. لا شي. يستحق" |
|
|
|
--- |
|
|
|
# BERT-ASTD Balanced |
|
Arabic version bert model fine tuned on Hotel Arabic Reviews dataset from booking.com (HARD) dataset balanced version to identify sentiments opinion in Arabic language. |
|
|
|
## Data |
|
The model were fine-tuned on ~93000 book reviews in arabic using bert large arabic |
|
|
|
Dataset: |
|
- Train 70% |
|
- Validation: 10% |
|
- Test: 20% |
|
|
|
|
|
## Results |
|
| class | precision | recall | f1-score | Support | |
|
|----------|-----------|--------|----------|---------| |
|
| 0 | 0.9733 | 0.9547 | 0.9639 | 10570 | |
|
| 1 | 0.9555 | 0.9738 | 0.9646 | 10570 | |
|
| Accuracy | | | 0.9642 | 21140 | |
|
|
|
|
|
|
|
|
|
|
|
## How to use |
|
|
|
You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model_name="mofawzy/Bert-hard-balanced" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name,num_labels=2) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
``` |