Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 254.76 +/- 32.21
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e4d89e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e4d89e840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e4d89e8e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e4d89e980>", "_build": "<function ActorCriticPolicy._build at 0x7f0e4d89ea20>", "forward": "<function ActorCriticPolicy.forward at 0x7f0e4d89eac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0e4d89eb60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e4d89ec00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0e4d89eca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e4d89ed40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e4d89ede0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e4d89ee80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0e4d893b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690287265585046074, "learning_rate": 0.0002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOhPjyPnju6PJrLuuR1HzdU1gy6r6uLtgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGmEyULUkSMAWyUTTkBjAF0lEdAm0gDLSuyNXV9lChoBkdAcGMWcjJMg2gHTScBaAhHQJtKPp7kXDZ1fZQoaAZHQEfqtU4rBj5oB0vhaAhHQJtKtZntfHB1fZQoaAZHQEKgZML4N7VoB0vZaAhHQJtLKt1ZDAt1fZQoaAZHQHBz0tAcDKZoB00PAWgIR0CbS7bqhUR4dX2UKGgGR0A7u6BRQ79yaAdL7GgIR0CbTbw7kn1GdX2UKGgGR0Bym85sCT2WaAdNUQFoCEdAm05t0JWvKXV9lChoBkdANZBzFMqSYGgHS89oCEdAm07Zc9nscHV9lChoBkdAcAQ/rjYI0WgHTQcBaAhHQJtPYOf/WDp1fZQoaAZHQHGMp2IO6NFoB00MAWgIR0CbUXoE0SAZdX2UKGgGR0BFq12q1gIAaAdL0mgIR0CbUejesPrfdX2UKGgGR0BuQtR1oxpMaAdNLQFoCEdAm1KE7r9l3HV9lChoBkdAclwhH9WIXWgHTSkBaAhHQJtTHi97F851fZQoaAZHQHA+U1IiC8RoB009AWgIR0CbVVOz6ab4dX2UKGgGR0Bv/jIq9XcQaAdNLAFoCEdAm1Xvhhpg1HV9lChoBkdAa/jG0eEIxGgHTSIBaAhHQJtWh32VVxV1fZQoaAZHQG9vNvwVj7RoB00jAWgIR0CbWKjQiRnwdX2UKGgGR0Bjg1KK508vaAdN6ANoCEdAm1xIOtnwonV9lChoBkdAb4mwMYuTR2gHTUcBaAhHQJtc9L0z0pV1fZQoaAZHQE2NFd9lVcVoB0vjaAhHQJtdauJUHY91fZQoaAZHQHHhrVFx4ptoB00iAWgIR0CbXgBU70WedX2UKGgGR0BvU7rkbPyDaAdNEwFoCEdAm2Aaf4AS4HV9lChoBkdAcf+QpF1B+mgHTTYBaAhHQJtgvkhib2F1fZQoaAZHQG+4bRF7UodoB00lAWgIR0CbYVTYdyT7dX2UKGgGR0ByaXeMyad+aAdNNgFoCEdAm2OF1jiGWXV9lChoBkdAcChp2ll9SmgHTTMBaAhHQJtkJRwZOzp1fZQoaAZHQG6ZdtuUD+1oB00WAWgIR0CbZLdszl90dX2UKGgGR0BwDIm6XjU/aAdNJwFoCEdAm2VOlXRw63V9lChoBkdAclHJ40Mw12gHTU4BaAhHQJtnjItDlYF1fZQoaAZHQBaEwztTkyVoB0vXaAhHQJtn91IRRMx1fZQoaAZHQDUonNPgvUVoB0vraAhHQJtoa6jFhod1fZQoaAZHQEp4bNKRMexoB0veaAhHQJto3hP0qYt1fZQoaAZHQHDUM8La24NoB006AWgIR0Cba0Gp++dtdX2UKGgGR0BwALTH80k4aAdNQgFoCEdAm2vyyhSLqHV9lChoBkdAbwBFWn0kGGgHTSIBaAhHQJtslsxfv4N1fZQoaAZHQGQo3FDOTq1oB03oA2gIR0CbcEJo0ygxdX2UKGgGR0BgrAw482aVaAdN6ANoCEdAm3Ph//echHV9lChoBkdAcT/+fRNRFmgHTUABaAhHQJt2FeY2Kl51fZQoaAZHQGw8T8HfMwFoB01ZAWgIR0CbdsjYZl4DdX2UKGgGR0BvugyM1jy4aAdN9AFoCEdAm3fMZ5zHTHV9lChoBkdAcU2roW56MWgHTYMBaAhHQJt6PWBjFyd1fZQoaAZHQHFObBsQ/X5oB02NA2gIR0CbfackdFOPdX2UKGgGR0BdNwPAfuCxaAdN6ANoCEdAm4FArDqGDnV9lChoBkdAcLvIzWPLgWgHTYsBaAhHQJuCDWbwz+F1fZQoaAZHQHGfo6nzg/FoB00YAWgIR0Cbgpt1ZDArdX2UKGgGR0Bh8rTfBN21aAdN6ANoCEdAm4ZJFgDzRXV9lChoBkdAcPhVhCtzS2gHTUABaAhHQJuIgFJQLux1fZQoaAZHQGFvZlOGj9JoB03oA2gIR0CbjCHKwIMSdX2UKGgGR0ByX8Emplz2aAdNRgFoCEdAm4zK3y7PIHV9lChoBkdAbrITrVvuPWgHTUABaAhHQJuNbO0LMLZ1fZQoaAZHQG9vo7vG6wtoB02BAmgIR0CbkD18stkGdX2UKGgGR0BvBAF3Y+SsaAdNMAFoCEdAm5DacRUWEnV9lChoBkdAcb6jawljVmgHTVMBaAhHQJuRgGeMAFR1fZQoaAZHQGAdbwrlNlBoB03oA2gIR0CblR9sabWmdX2UKGgGR0Ay87T2FnIyaAdLymgIR0CblxOSW7e3dX2UKGgGR0BpdDpqynk1aAdN6ANoCEdAm5qnS4OMEXV9lChoBkdADnDO1OTJQ2gHS8loCEdAm5sODjBEa3V9lChoBkdAM8kxh2GIsWgHS75oCEdAm5tvFaSs83V9lChoBkdARF0wL3K0U2gHS89oCEdAm5vYRywOfHV9lChoBkdALemWt2cJ+mgHS+ZoCEdAm5xNA1Nxl3V9lChoBkdAcBl7MgU1ymgHTTIBaAhHQJuecHE/B311fZQoaAZHQGHfa7mMfihoB03oA2gIR0CbohQnx8UmdX2UKGgGR0BkLINVinYQaAdN6ANoCEdAm6WxWkrPMXV9lChoBkdAcjhy/9Hc12gHTXUBaAhHQJumdKtga3t1fZQoaAZHQHHm2XkYGdJoB02AAWgIR0CbpzimEXchdX2UKGgGR0BFM7gTAWSEaAdLwmgIR0CbqSIOYplSdX2UKGgGR0BGVq+ajN6gaAdL3GgIR0CbqZKwIMScdX2UKGgGR0BE0v3JxNqQaAdLxGgIR0CbqfdSVGCqdX2UKGgGR0BuW1cKPXCkaAdNMQFoCEdAm6qW3jMmnnV9lChoBkdAcMi9dNWU8mgHTTsBaAhHQJusxHQQcxV1fZQoaAZHQGLWB3iaRZFoB03oA2gIR0CbsExjJ+2FdX2UKGgGR0BkEK8zyjHoaAdN6ANoCEdAm7PaveP7vXV9lChoBkdAcRo9MK1G9mgHTZkBaAhHQJu0reEZiux1fZQoaAZHQFDxCw8nuzBoB0v5aAhHQJu1LqX4TK11fZQoaAZHQGRcFEy+HrRoB03oA2gIR0CbuLnaFmFrdX2UKGgGR0BwB9T3qRlpaAdNRAFoCEdAm7rr92ovSXV9lChoBkdAcRtd6cAimmgHTYcBaAhHQJu7skOZssR1fZQoaAZHQHA8hUvPC2toB00YAWgIR0CbvD2nsLOSdX2UKGgGR0Byk1Pl+3H8aAdNRAFoCEdAm75fr4WUKXV9lChoBkdAcFpo3aSLZWgHTToBaAhHQJu/AqDsdDJ1fZQoaAZHQHDrKTbFjutoB00OAWgIR0Cbv4zPrv9cdX2UKGgGR0BwpLRgJC0GaAdNIAFoCEdAm8AgOz6acHV9lChoBkdAZiOZTho/RmgHTegDaAhHQJvDvUExIrh1fZQoaAZHQHDQpm7J4jdoB01NAWgIR0Cbxe/3nIQwdX2UKGgGR0BmuzRIBikPaAdN6ANoCEdAm8lye2/i53V9lChoBkdAcuMadc0Lt2gHTe0CaAhHQJvK77xd6cB1fZQoaAZHQELq8wpON5toB0vUaAhHQJvM3jR2KVJ1fZQoaAZHQHCtI6nzg/FoB01yAWgIR0CbzZ3pfQa8dX2UKGgGR0BwTJ7tzCDVaAdNKgFoCEdAm841l05lv3V9lChoBkdAEV5LAYYR/WgHS8NoCEdAm86aD0163XV9lChoBkdAcQIXSBshxGgHTSABaAhHQJvQt9JBgNR1fZQoaAZHQGN1Vv/BFd9oB03oA2gIR0Cb1FUwSJ0odX2UKGgGR0Bxgjlmvnr6aAdNNgFoCEdAm9T4jrzGxXV9lChoBkdAcBqw7T2FnWgHTUMBaAhHQJvVnVawD/51fZQoaAZHQEdEf29L6DZoB0vlaAhHQJvXs+7lJYl1fZQoaAZHQGZVL433pOhoB03oA2gIR0Cb2bDSPU8WdX2UKGgGR0BurNUbT+efaAdNJAFoCEdAm9vPSYw7DHV9lChoBkdASuLZxrBTGmgHS/1oCEdAm9xSvovBanV9lChoBkdAcF8CnxaxHGgHTUwBaAhHQJvc/Ck43m51fZQoaAZHQHDfQNXo1UFoB01QAWgIR0Cb3zWOIZZTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15632, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.28 # 1 SMP Fri Mar 17 01:52:38 EDT 2023", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fe01567a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fe0156840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fe01568e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fe0156980>", "_build": "<function ActorCriticPolicy._build at 0x7f5fe0156a20>", "forward": "<function ActorCriticPolicy.forward at 0x7f5fe0156ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5fe0156b60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fe0156c00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5fe0156ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fe0156d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fe0156de0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fe0156e80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5fe014b140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4005888, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690289265149518252, "learning_rate": 0.00025, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAABciDuuAam61s5ANUwEnDBJE4E6L8hBtAAAgD8AAIA/TVwYPeFQl7p0WA+8aUaNNimlabodlf21AACAPwAAAADN5o49qYO/PoW1Zb0EbvS+KXeoPUYL7joAAAAAAAAAAMCSUz7wFrg+/tkovpP75L5wBCE+EC+WvQAAAAAAAAAAzUw5PuWboD9WSdI+1dc/v/Ezez71NmU8AAAAAAAAAADNcpc86XxVvMjvZ72nk4A9gH+WPVXprjwAAIA/AACAPwA+Ib2uWZC6Wr0htYth3q8I/ss6DgZhNAAAAAAAAIA/WruEPYptYT5+RIS+DOuhvheKGr00Lam9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHASBEa2nbaMAWyUS8SMAXSUR0Ctl6qHGjsVdX2UKGgGR0BwMb2kBS1maAdL0GgIR0CtoMWeHzpYdX2UKGgGR0BwNo5uIhyKaAdLxGgIR0CtoNNcnmaIdX2UKGgGR0BxuTRlYlpoaAdLwWgIR0CtoPJHiFTOdX2UKGgGR0ByuyWLP2PDaAdLtGgIR0CtoTfxMFlkdX2UKGgGR0ByToIkZ75VaAdLzWgIR0CtoWmUnogWdX2UKGgGR0Bx1CNYKYzBaAdLy2gIR0CtobEQPI4mdX2UKGgGR0B0I9PHktEoaAdL6mgIR0CtodCO3lS1dX2UKGgGR0Bxv12X9itraAdLtmgIR0CtogEQGwA3dX2UKGgGR0BxyRe2NNrTaAdLzmgIR0CtohuXmeUZdX2UKGgGR0BxjEQ4CIUKaAdLtGgIR0Ctoh6vRqoIdX2UKGgGR0BPyRxDLKV6aAdLkWgIR0Ctop6Zx7zDdX2UKGgGR0ByEh36hxo7aAdL3GgIR0CtoqQtBfKIdX2UKGgGR0BzleQU5+6RaAdL5WgIR0CtouVYp2ECdX2UKGgGR0BkT5Z0Syt3aAdN6ANoCEdAraLzk2gnMXV9lChoBkdAcwKZpSJj2GgHS9NoCEdAraMhWaMJhXV9lChoBkdAcbdxQSBbwGgHS9ZoCEdAraNMyP+4snV9lChoBkdAcoZmj0th/mgHS/xoCEdAraOZGjKxLXV9lChoBkdAcHz6UaAFxGgHS79oCEdAraO63gDRt3V9lChoBkdAcwo43WFvh2gHS85oCEdAraPLWy1NQHV9lChoBkdAcon5LAYYSGgHS8NoCEdAraP2yxA0K3V9lChoBkdAcLo9JBgNPWgHS9BoCEdAraQU4T9KmXV9lChoBkdAcpWnnMdLhGgHS8ZoCEdAraRvRG+bmXV9lChoBkdAcZbGhVU+92gHS+loCEdAraRzTUiIL3V9lChoBkdAc6GbLlmvn2gHS9BoCEdAraT+jASFoXV9lChoBkdAbyqqXF98Z2gHS8RoCEdAraU1OZb6g3V9lChoBkdAcrt3bVSXMWgHS7RoCEdAraU+foRqXXV9lChoBkdAcea0vGp++mgHTQUBaAhHQK2ldZ9NN8F1fZQoaAZHQG/lE9U0eltoB0u8aAhHQK2ltdTHbRF1fZQoaAZHQHL343zcynFoB0vcaAhHQK2l8uCf6Gh1fZQoaAZHQHJ6rMLWqcVoB0vcaAhHQK2mmj0th/l1fZQoaAZHQHETgWi1y/9oB0vNaAhHQK2muUY8+zN1fZQoaAZHQEwFbYbsF+xoB0uGaAhHQK2muW+GoJl1fZQoaAZHQHEAd6cAimloB0vVaAhHQK2m0biIcip1fZQoaAZHQHFkAow22ohoB0vQaAhHQK2nAlBQemx1fZQoaAZHQHAKRrzoUztoB0vAaAhHQK2wWMrEtNB1fZQoaAZHQHFGtGAkLQZoB0vAaAhHQK2xH67dzn11fZQoaAZHQHOnhxcVxjtoB0vKaAhHQK2xNXxvvSd1fZQoaAZHQHEeSsS00FdoB0viaAhHQK2xSDQqqfh1fZQoaAZHQHJye5nUUfxoB0vUaAhHQK2xZDJEH+t1fZQoaAZHQHQfoIOYplVoB0vpaAhHQK2xvxUedTZ1fZQoaAZHQGdSAxBVuJloB03oA2gIR0CtsdnrIHTrdX2UKGgGR0BwDvhky1u0aAdLwWgIR0CtsdypBHCodX2UKGgGR0ByElKdxyXEaAdLz2gIR0Ctsqq5CngpdX2UKGgGR0By8zZdv864aAdLxWgIR0Ctsqrq+rU9dX2UKGgGR0By3usq8UVSaAdLw2gIR0Ctsrf3evZAdX2UKGgGR0BRLzoZAIIGaAdLhWgIR0CtsspR4yGjdX2UKGgGR0Bwvv1xsEaEaAdLx2gIR0CtstcqFyq/dX2UKGgGR0BvooUvf0mMaAdLzGgIR0CtsyxSgoPTdX2UKGgGR0BwnKcmShalaAdLzWgIR0Cts0fOlfqpdX2UKGgGR0BoRxhrnDBNaAdN6ANoCEdArbOUjFAE+3V9lChoBkdAb7iowVTJhmgHS7xoCEdArbPaMHbAUXV9lChoBkdAbvpLOiWVvGgHS8JoCEdArbPiGFi8WnV9lChoBkdAcOOHZK3/gmgHS7doCEdArbPz101ZT3V9lChoBkdAVO33JxNqQGgHS5JoCEdArbQFIK+i8HV9lChoBkdAc5aflIVdomgHS9VoCEdArbQQ55qubXV9lChoBkdAcFrp84Pwu2gHS+NoCEdArbQVRR/EwXV9lChoBkdAUePhZQpF1GgHS31oCEdArbS5BqsU7HV9lChoBkdAc5VfCyhSL2gHS+JoCEdArbTBwCKaX3V9lChoBkdAcEwlenhsImgHS79oCEdArbTl8LKFI3V9lChoBkdAb5jAfuCwr2gHS7doCEdArbTvffoA4nV9lChoBkdAcy/tvGZNPGgHS89oCEdArbT1lwtJ4HV9lChoBkdAbj+oAGSpzmgHS9JoCEdArbUqcXm/33V9lChoBkdAciLQRf4REmgHS7loCEdArbY4HZ9NOHV9lChoBkdActCLqD9OymgHS9hoCEdArbZm7z06HXV9lChoBkdAb15qD9OymmgHS7poCEdArbZ203Ov+3V9lChoBkdAcaRNH6MzdmgHS9doCEdArbaXm1YyPHV9lChoBkdAcuUPO6d1+2gHS9toCEdArbapo4+8oXV9lChoBkdAbyIJNTLntGgHS8xoCEdArbbUZP2wmnV9lChoBkdAcV+hllK9PGgHS9doCEdArcBm51/2CnV9lChoBkdAcedSA6Mir2gHS9ZoCEdArcCWseXAunV9lChoBkdAb2Wogmqo62gHS75oCEdArcCfetSydHV9lChoBkdAcqfuCf6Gg2gHS9ZoCEdArcCouscQy3V9lChoBkdAcBl3kPtlZ2gHS8JoCEdArcC4JXyRS3V9lChoBkdAcZbMFUyYX2gHS/hoCEdArcFM9t/FznV9lChoBkdAcLa9uP3i72gHS8ZoCEdArcIccU/OdHV9lChoBkdAc6Dws5GSZGgHS8hoCEdArcIp7/n4f3V9lChoBkdAcT/1pTMq0GgHS8FoCEdArcI4aFVT73V9lChoBkdAcKmS2phnamgHS9NoCEdArcJL2i+L33V9lChoBkdAcLuOy3Td+GgHS8xoCEdArcL0UO/cnHV9lChoBkdAZojybx3FDWgHTegDaAhHQK3C+0+C9RJ1fZQoaAZHQHBkBi1AqutoB0u/aAhHQK3DnFVDKHR1fZQoaAZHQHK6q+zt1IRoB0vSaAhHQK3DtDYRNAV1fZQoaAZHQHMJKJ2t+1BoB0vNaAhHQK3Dwqslsxh1fZQoaAZHQHMieDzyz5ZoB0vcaAhHQK3D7hTfixV1fZQoaAZHQGiivCdjG1hoB03oA2gIR0Ctw/vb48EFdX2UKGgGR0BxdgrNGEwnaAdL1GgIR0CtxGDJ2dNGdX2UKGgGR0BxyBL0z0pWaAdL3mgIR0CtxHVR1oxpdX2UKGgGR0Bv3O3fAKv3aAdLxmgIR0CtxPJ1zQu3dX2UKGgGR0Bzrdf1HvtuaAdL1GgIR0CtxPSnDR+jdX2UKGgGR0BxEVgF5fMOaAdLu2gIR0CtxRU+1SfldX2UKGgGR0Bw2+0AtFrmaAdLwGgIR0CtxSo7FKkEdX2UKGgGR0Bxz+2oegctaAdL+GgIR0CtxU55zHS4dX2UKGgGR0BztkIkZ75VaAdLzmgIR0CtxajjR2KVdX2UKGgGR0Bzp8bEP1+RaAdL02gIR0CtxciW3Sa3dX2UKGgGR0BN6OHN5dGBaAdLhGgIR0CtxcpBw++udX2UKGgGR0BwRvLyMDOkaAdLxmgIR0CtxjI7FKkEdX2UKGgGR0BvSbd8Aq/eaAdLvmgIR0Ctxkg9eQdTdX2UKGgGR0BxXW+49X9zaAdLwmgIR0CtxmSBTXJ6dX2UKGgGR0Bx+wh6jWTYaAdLzGgIR0CtxpxaX8fndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/MGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.28 # 1 SMP Fri Mar 17 01:52:38 EDT 2023", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff26f757999b0afffa4961055de621c6417bd65b75c705f70e58fb64fefebdd
|
3 |
+
size 146748
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"n_steps": 1024,
|
56 |
"gamma": 0.999,
|
57 |
"gae_lambda": 0.98,
|
@@ -59,7 +59,7 @@
|
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
"batch_size": 64,
|
62 |
-
"n_epochs":
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
@@ -91,9 +91,9 @@
|
|
91 |
"dtype": "int64",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
-
"n_envs":
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fe01567a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fe0156840>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fe01568e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fe0156980>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5fe0156a20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5fe0156ac0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5fe0156b60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fe0156c00>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5fe0156ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fe0156d40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fe0156de0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fe0156e80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5fe014b140>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 4005888,
|
25 |
+
"_total_timesteps": 4000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1690289265149518252,
|
30 |
+
"learning_rate": 0.00025,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAABciDuuAam61s5ANUwEnDBJE4E6L8hBtAAAgD8AAIA/TVwYPeFQl7p0WA+8aUaNNimlabodlf21AACAPwAAAADN5o49qYO/PoW1Zb0EbvS+KXeoPUYL7joAAAAAAAAAAMCSUz7wFrg+/tkovpP75L5wBCE+EC+WvQAAAAAAAAAAzUw5PuWboD9WSdI+1dc/v/Ezez71NmU8AAAAAAAAAADNcpc86XxVvMjvZ72nk4A9gH+WPVXprjwAAIA/AACAPwA+Ib2uWZC6Wr0htYth3q8I/ss6DgZhNAAAAAAAAIA/WruEPYptYT5+RIS+DOuhvheKGr00Lam9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHASBEa2nbaMAWyUS8SMAXSUR0Ctl6qHGjsVdX2UKGgGR0BwMb2kBS1maAdL0GgIR0CtoMWeHzpYdX2UKGgGR0BwNo5uIhyKaAdLxGgIR0CtoNNcnmaIdX2UKGgGR0BxuTRlYlpoaAdLwWgIR0CtoPJHiFTOdX2UKGgGR0ByuyWLP2PDaAdLtGgIR0CtoTfxMFlkdX2UKGgGR0ByToIkZ75VaAdLzWgIR0CtoWmUnogWdX2UKGgGR0Bx1CNYKYzBaAdLy2gIR0CtobEQPI4mdX2UKGgGR0B0I9PHktEoaAdL6mgIR0CtodCO3lS1dX2UKGgGR0Bxv12X9itraAdLtmgIR0CtogEQGwA3dX2UKGgGR0BxyRe2NNrTaAdLzmgIR0CtohuXmeUZdX2UKGgGR0BxjEQ4CIUKaAdLtGgIR0Ctoh6vRqoIdX2UKGgGR0BPyRxDLKV6aAdLkWgIR0Ctop6Zx7zDdX2UKGgGR0ByEh36hxo7aAdL3GgIR0CtoqQtBfKIdX2UKGgGR0BzleQU5+6RaAdL5WgIR0CtouVYp2ECdX2UKGgGR0BkT5Z0Syt3aAdN6ANoCEdAraLzk2gnMXV9lChoBkdAcwKZpSJj2GgHS9NoCEdAraMhWaMJhXV9lChoBkdAcbdxQSBbwGgHS9ZoCEdAraNMyP+4snV9lChoBkdAcoZmj0th/mgHS/xoCEdAraOZGjKxLXV9lChoBkdAcHz6UaAFxGgHS79oCEdAraO63gDRt3V9lChoBkdAcwo43WFvh2gHS85oCEdAraPLWy1NQHV9lChoBkdAcon5LAYYSGgHS8NoCEdAraP2yxA0K3V9lChoBkdAcLo9JBgNPWgHS9BoCEdAraQU4T9KmXV9lChoBkdAcpWnnMdLhGgHS8ZoCEdAraRvRG+bmXV9lChoBkdAcZbGhVU+92gHS+loCEdAraRzTUiIL3V9lChoBkdAc6GbLlmvn2gHS9BoCEdAraT+jASFoXV9lChoBkdAbyqqXF98Z2gHS8RoCEdAraU1OZb6g3V9lChoBkdAcrt3bVSXMWgHS7RoCEdAraU+foRqXXV9lChoBkdAcea0vGp++mgHTQUBaAhHQK2ldZ9NN8F1fZQoaAZHQG/lE9U0eltoB0u8aAhHQK2ltdTHbRF1fZQoaAZHQHL343zcynFoB0vcaAhHQK2l8uCf6Gh1fZQoaAZHQHJ6rMLWqcVoB0vcaAhHQK2mmj0th/l1fZQoaAZHQHETgWi1y/9oB0vNaAhHQK2muUY8+zN1fZQoaAZHQEwFbYbsF+xoB0uGaAhHQK2muW+GoJl1fZQoaAZHQHEAd6cAimloB0vVaAhHQK2m0biIcip1fZQoaAZHQHFkAow22ohoB0vQaAhHQK2nAlBQemx1fZQoaAZHQHAKRrzoUztoB0vAaAhHQK2wWMrEtNB1fZQoaAZHQHFGtGAkLQZoB0vAaAhHQK2xH67dzn11fZQoaAZHQHOnhxcVxjtoB0vKaAhHQK2xNXxvvSd1fZQoaAZHQHEeSsS00FdoB0viaAhHQK2xSDQqqfh1fZQoaAZHQHJye5nUUfxoB0vUaAhHQK2xZDJEH+t1fZQoaAZHQHQfoIOYplVoB0vpaAhHQK2xvxUedTZ1fZQoaAZHQGdSAxBVuJloB03oA2gIR0CtsdnrIHTrdX2UKGgGR0BwDvhky1u0aAdLwWgIR0CtsdypBHCodX2UKGgGR0ByElKdxyXEaAdLz2gIR0Ctsqq5CngpdX2UKGgGR0By8zZdv864aAdLxWgIR0Ctsqrq+rU9dX2UKGgGR0By3usq8UVSaAdLw2gIR0Ctsrf3evZAdX2UKGgGR0BRLzoZAIIGaAdLhWgIR0CtsspR4yGjdX2UKGgGR0Bwvv1xsEaEaAdLx2gIR0CtstcqFyq/dX2UKGgGR0BvooUvf0mMaAdLzGgIR0CtsyxSgoPTdX2UKGgGR0BwnKcmShalaAdLzWgIR0Cts0fOlfqpdX2UKGgGR0BoRxhrnDBNaAdN6ANoCEdArbOUjFAE+3V9lChoBkdAb7iowVTJhmgHS7xoCEdArbPaMHbAUXV9lChoBkdAbvpLOiWVvGgHS8JoCEdArbPiGFi8WnV9lChoBkdAcOOHZK3/gmgHS7doCEdArbPz101ZT3V9lChoBkdAVO33JxNqQGgHS5JoCEdArbQFIK+i8HV9lChoBkdAc5aflIVdomgHS9VoCEdArbQQ55qubXV9lChoBkdAcFrp84Pwu2gHS+NoCEdArbQVRR/EwXV9lChoBkdAUePhZQpF1GgHS31oCEdArbS5BqsU7HV9lChoBkdAc5VfCyhSL2gHS+JoCEdArbTBwCKaX3V9lChoBkdAcEwlenhsImgHS79oCEdArbTl8LKFI3V9lChoBkdAb5jAfuCwr2gHS7doCEdArbTvffoA4nV9lChoBkdAcy/tvGZNPGgHS89oCEdArbT1lwtJ4HV9lChoBkdAbj+oAGSpzmgHS9JoCEdArbUqcXm/33V9lChoBkdAciLQRf4REmgHS7loCEdArbY4HZ9NOHV9lChoBkdActCLqD9OymgHS9hoCEdArbZm7z06HXV9lChoBkdAb15qD9OymmgHS7poCEdArbZ203Ov+3V9lChoBkdAcaRNH6MzdmgHS9doCEdArbaXm1YyPHV9lChoBkdAcuUPO6d1+2gHS9toCEdArbapo4+8oXV9lChoBkdAbyIJNTLntGgHS8xoCEdArbbUZP2wmnV9lChoBkdAcV+hllK9PGgHS9doCEdArcBm51/2CnV9lChoBkdAcedSA6Mir2gHS9ZoCEdArcCWseXAunV9lChoBkdAb2Wogmqo62gHS75oCEdArcCfetSydHV9lChoBkdAcqfuCf6Gg2gHS9ZoCEdArcCouscQy3V9lChoBkdAcBl3kPtlZ2gHS8JoCEdArcC4JXyRS3V9lChoBkdAcZbMFUyYX2gHS/hoCEdArcFM9t/FznV9lChoBkdAcLa9uP3i72gHS8ZoCEdArcIccU/OdHV9lChoBkdAc6Dws5GSZGgHS8hoCEdArcIp7/n4f3V9lChoBkdAcT/1pTMq0GgHS8FoCEdArcI4aFVT73V9lChoBkdAcKmS2phnamgHS9NoCEdArcJL2i+L33V9lChoBkdAcLuOy3Td+GgHS8xoCEdArcL0UO/cnHV9lChoBkdAZojybx3FDWgHTegDaAhHQK3C+0+C9RJ1fZQoaAZHQHBkBi1AqutoB0u/aAhHQK3DnFVDKHR1fZQoaAZHQHK6q+zt1IRoB0vSaAhHQK3DtDYRNAV1fZQoaAZHQHMJKJ2t+1BoB0vNaAhHQK3Dwqslsxh1fZQoaAZHQHMieDzyz5ZoB0vcaAhHQK3D7hTfixV1fZQoaAZHQGiivCdjG1hoB03oA2gIR0Ctw/vb48EFdX2UKGgGR0BxdgrNGEwnaAdL1GgIR0CtxGDJ2dNGdX2UKGgGR0BxyBL0z0pWaAdL3mgIR0CtxHVR1oxpdX2UKGgGR0Bv3O3fAKv3aAdLxmgIR0CtxPJ1zQu3dX2UKGgGR0Bzrdf1HvtuaAdL1GgIR0CtxPSnDR+jdX2UKGgGR0BxEVgF5fMOaAdLu2gIR0CtxRU+1SfldX2UKGgGR0Bw2+0AtFrmaAdLwGgIR0CtxSo7FKkEdX2UKGgGR0Bxz+2oegctaAdL+GgIR0CtxU55zHS4dX2UKGgGR0BztkIkZ75VaAdLzmgIR0CtxajjR2KVdX2UKGgGR0Bzp8bEP1+RaAdL02gIR0CtxciW3Sa3dX2UKGgGR0BN6OHN5dGBaAdLhGgIR0CtxcpBw++udX2UKGgGR0BwRvLyMDOkaAdLxmgIR0CtxjI7FKkEdX2UKGgGR0BvSbd8Aq/eaAdLvmgIR0Ctxkg9eQdTdX2UKGgGR0BxXW+49X9zaAdLwmgIR0CtxmSBTXJ6dX2UKGgGR0Bx+wh6jWTYaAdLzGgIR0CtxpxaX8fndWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 4890,
|
55 |
"n_steps": 1024,
|
56 |
"gamma": 0.999,
|
57 |
"gae_lambda": 0.98,
|
|
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
"batch_size": 64,
|
62 |
+
"n_epochs": 10,
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
91 |
"dtype": "int64",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
+
"n_envs": 8,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/MGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88057
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acf744b9ee320cc703098ca58e22faac5a69bb64398f280ad96b6e630aad9da4
|
3 |
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a16fa5f3a9e9cfea69d89efe8eef95a0d727ea78a3ac6d9fd4b7bffa3088f60e
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 254.7623752, "std_reward": 32.20587219573821, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-25T16:38:05.103263"}
|