|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi |
|
model-index: |
|
- name: tinyllama-mixpretrain-uniprottune |
|
results: [] |
|
datasets: |
|
- monsoon-nlp/greenbeing-proteins |
|
--- |
|
|
|
# tinyllama-mixpretrain-uniprottune |
|
|
|
This is an adapter of the [monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi](https://huggingface.co/monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi) |
|
model on the GreenBeing dataset finetuning split (minus maize/corn/*Zea*, which I left for evaluation). |
|
|
|
## Usage |
|
|
|
``` |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
# this model |
|
model = AutoPeftModelForCausalLM.from_pretrained("monsoon-nlp/tinyllama-mixpretrain-uniprottune").to("cuda") |
|
# base model for the tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi") |
|
|
|
inputs = tokenizer("<sequence> Subcellular locations:", return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50) |
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) |
|
``` |
|
|
|
Inference Notebook: https://colab.research.google.com/drive/1UTavcVpqWkp4C_GkkS_HxDQ0Orpw43iu?usp=sharing |
|
|
|
It seems unreliable on the *Zea* proteins. Getting a lot of the same answers for Subcellular locations. |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 20 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.15.2 |