PEFT
code
instruct
zephyr
zephyr_7b_norobots / README.md
souvik0306's picture
Update README.md
635a2df
|
raw
history blame
1.46 kB
---
library_name: transformers
tags:
- code
- instruct
- zephyr
datasets:
- Zangs3011/no_robots_FalconChatFormated
base_model: HuggingFaceH4/zephyr-7b-alpha
license: apache-2.0
---
### Finetuning Overview:
**Model Used:** HuggingFaceH4/zephyr-7b-alpha
**Dataset:** Zangs3011/no_robots_FalconChatFormated
#### Dataset Insights:
The WizardLM/WizardLM_evol_instruct_70k dataset, tailored specifically for enhancing interactive capabilities, it was developed using EVOL-Instruct method.Which will basically enhance a smaller dataset, with tougher quesitons for the LLM to perform
#### Finetuning Details:
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
- Was achieved with great cost-effectiveness.
- Completed in a total duration of 36mins 47secs for 1 epoch using an A6000 48GB GPU.
- Costed `$1.212` for the entire epoch.
#### Hyperparameters & Additional Details:
- **Epochs:** 1
- **Cost Per Epoch:** $1.212
- **Total Finetuning Cost:** $1.212
- **Model Path:** HuggingFaceH4/zephyr-7b-alpha
- **Learning Rate:** 0.0002
- **Data Split:** 99% train 1% validation
- **Gradient Accumulation Steps:** 4
---
Prompt Structure
```
### INSTRUCTION:
[instruction]
### RESPONSE:
[text]
```
Eval loss :
![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/ZltGlksaxy6uCIiQ45X-L.png)
license: apache-2.0