|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swinv2-tiny-patch4-window8-256 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swinv2-tiny-patch4-window8-256-finetuned-gardner-icm-max |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6428571428571429 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swinv2-tiny-patch4-window8-256-finetuned-gardner-icm-max |
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0741 |
|
- Accuracy: 0.6429 |
|
|
|
## Model description |
|
|
|
Predict Inner Cell Mass Grade - Gardner Score from an embryo image |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.0925 | 0.94 | 11 | 1.0631 | 0.7952 | |
|
| 0.9552 | 1.96 | 23 | 0.6336 | 0.7952 | |
|
| 0.6566 | 2.98 | 35 | 0.5356 | 0.7952 | |
|
| 0.5686 | 4.0 | 47 | 0.5150 | 0.7952 | |
|
| 0.5703 | 4.94 | 58 | 0.5129 | 0.7952 | |
|
| 0.5726 | 5.96 | 70 | 0.5154 | 0.7952 | |
|
| 0.5482 | 6.98 | 82 | 0.5142 | 0.7952 | |
|
| 0.568 | 8.0 | 94 | 0.5109 | 0.7952 | |
|
| 0.5245 | 8.94 | 105 | 0.5134 | 0.7952 | |
|
| 0.5979 | 9.96 | 117 | 0.5238 | 0.7952 | |
|
| 0.5442 | 10.98 | 129 | 0.5076 | 0.7952 | |
|
| 0.545 | 12.0 | 141 | 0.5062 | 0.7952 | |
|
| 0.5514 | 12.94 | 152 | 0.5013 | 0.7952 | |
|
| 0.5377 | 13.96 | 164 | 0.5045 | 0.7952 | |
|
| 0.5282 | 14.98 | 176 | 0.5038 | 0.7952 | |
|
| 0.5389 | 16.0 | 188 | 0.4994 | 0.7952 | |
|
| 0.5039 | 16.94 | 199 | 0.4996 | 0.7952 | |
|
| 0.5348 | 17.96 | 211 | 0.4940 | 0.7952 | |
|
| 0.5426 | 18.72 | 220 | 0.4947 | 0.7952 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|