metadata
license: mit
language:
- en
Introduction
MoMo-70B is trained via Supervised Fine-Tuning (SFT) using LoRA, with the QWEN-72B model as its base-model
Note that we did not exploit any form of weight merge.
For leaderboard submission, the trained weight is reordered for compatibility with llama.
Details
Used Librarys
- torch
- peft
Used Datasets
- Open-Orca/SlimOrca
- No other dataset was used
- No benchmark test set or the training set are used
- data contamination check result
Model | ARC | MMLU | TruthfulQA | GSM8K |
---|---|---|---|---|
V1.4(result < 0.1, %) | TBU | 0.73 | 0.71 | TBU |
Used Environments
- AMD MI250 & MoAI platform
- Please visit https://moreh.io/product for more information about MoAI platform
- Or, contact us directly contact@moreh.io
How to use
# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-70B-LoRA-V1.4")
model = AutoModelForCausalLM.from_pretrained(
"moreh/MoMo-70B-LoRA-V1.4"
)