MoMo-72B-LoRA-V1.4 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
77acdb8 verified
|
raw
history blame
4.74 kB
metadata
language:
  - en
license: mit
model-index:
  - name: MoMo-70B-LoRA-V1.4
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.2
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.07
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.12
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 62.66
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.74
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.2
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
          name: Open LLM Leaderboard

Introduction

MoMo-72B is trained via Supervised Fine-Tuning (SFT) using LoRA, with the QWEN-72B model as its base-model.
Note that we did not exploit any form of weight merge.
For leaderboard submission, the trained weight is realigned for compatibility with llama.
MoMo-72B is trained using Moreh's MoAI platform, which simplifies the training of large-scale models, and AMD's MI250 GPU.

Details

Used Librarys

  • torch
  • peft

Used Datasets

  • Open-Orca/SlimOrca
  • No other dataset was used
  • No benchmark test set or the training set are used
Model ARC MMLU TruthfulQA GSM8K
V1.4(result < 0.1, %) TBU 0.73 0.71 TBU

Used Environments

How to use

# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-LoRA-V1.4")
model = AutoModelForCausalLM.from_pretrained(
    "moreh/MoMo-72B-LoRA-V1.4"
)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.67
AI2 Reasoning Challenge (25-Shot) 69.20
HellaSwag (10-Shot) 85.07
MMLU (5-Shot) 77.12
TruthfulQA (0-shot) 62.66
Winogrande (5-shot) 83.74
GSM8k (5-shot) 70.20