Files changed (15) hide show
  1. LICENSE +0 -202
  2. README.md +6 -20
  3. adapt_tokenizer.py +5 -4
  4. attention.py +110 -198
  5. blocks.py +20 -34
  6. configuration_mpt.py +18 -83
  7. custom_embedding.py +3 -1
  8. fc.py +0 -7
  9. ffn.py +0 -97
  10. hf_prefixlm_converter.py +241 -6
  11. meta_init_context.py +12 -17
  12. modeling_mpt.py +92 -303
  13. norm.py +10 -11
  14. param_init_fns.py +51 -49
  15. warnings.py +0 -22
LICENSE DELETED
@@ -1,202 +0,0 @@
1
-
2
- Apache License
3
- Version 2.0, January 2004
4
- http://www.apache.org/licenses/
5
-
6
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
-
8
- 1. Definitions.
9
-
10
- "License" shall mean the terms and conditions for use, reproduction,
11
- and distribution as defined by Sections 1 through 9 of this document.
12
-
13
- "Licensor" shall mean the copyright owner or entity authorized by
14
- the copyright owner that is granting the License.
15
-
16
- "Legal Entity" shall mean the union of the acting entity and all
17
- other entities that control, are controlled by, or are under common
18
- control with that entity. For the purposes of this definition,
19
- "control" means (i) the power, direct or indirect, to cause the
20
- direction or management of such entity, whether by contract or
21
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
- outstanding shares, or (iii) beneficial ownership of such entity.
23
-
24
- "You" (or "Your") shall mean an individual or Legal Entity
25
- exercising permissions granted by this License.
26
-
27
- "Source" form shall mean the preferred form for making modifications,
28
- including but not limited to software source code, documentation
29
- source, and configuration files.
30
-
31
- "Object" form shall mean any form resulting from mechanical
32
- transformation or translation of a Source form, including but
33
- not limited to compiled object code, generated documentation,
34
- and conversions to other media types.
35
-
36
- "Work" shall mean the work of authorship, whether in Source or
37
- Object form, made available under the License, as indicated by a
38
- copyright notice that is included in or attached to the work
39
- (an example is provided in the Appendix below).
40
-
41
- "Derivative Works" shall mean any work, whether in Source or Object
42
- form, that is based on (or derived from) the Work and for which the
43
- editorial revisions, annotations, elaborations, or other modifications
44
- represent, as a whole, an original work of authorship. For the purposes
45
- of this License, Derivative Works shall not include works that remain
46
- separable from, or merely link (or bind by name) to the interfaces of,
47
- the Work and Derivative Works thereof.
48
-
49
- "Contribution" shall mean any work of authorship, including
50
- the original version of the Work and any modifications or additions
51
- to that Work or Derivative Works thereof, that is intentionally
52
- submitted to Licensor for inclusion in the Work by the copyright owner
53
- or by an individual or Legal Entity authorized to submit on behalf of
54
- the copyright owner. For the purposes of this definition, "submitted"
55
- means any form of electronic, verbal, or written communication sent
56
- to the Licensor or its representatives, including but not limited to
57
- communication on electronic mailing lists, source code control systems,
58
- and issue tracking systems that are managed by, or on behalf of, the
59
- Licensor for the purpose of discussing and improving the Work, but
60
- excluding communication that is conspicuously marked or otherwise
61
- designated in writing by the copyright owner as "Not a Contribution."
62
-
63
- "Contributor" shall mean Licensor and any individual or Legal Entity
64
- on behalf of whom a Contribution has been received by Licensor and
65
- subsequently incorporated within the Work.
66
-
67
- 2. Grant of Copyright License. Subject to the terms and conditions of
68
- this License, each Contributor hereby grants to You a perpetual,
69
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
- copyright license to reproduce, prepare Derivative Works of,
71
- publicly display, publicly perform, sublicense, and distribute the
72
- Work and such Derivative Works in Source or Object form.
73
-
74
- 3. Grant of Patent License. Subject to the terms and conditions of
75
- this License, each Contributor hereby grants to You a perpetual,
76
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
- (except as stated in this section) patent license to make, have made,
78
- use, offer to sell, sell, import, and otherwise transfer the Work,
79
- where such license applies only to those patent claims licensable
80
- by such Contributor that are necessarily infringed by their
81
- Contribution(s) alone or by combination of their Contribution(s)
82
- with the Work to which such Contribution(s) was submitted. If You
83
- institute patent litigation against any entity (including a
84
- cross-claim or counterclaim in a lawsuit) alleging that the Work
85
- or a Contribution incorporated within the Work constitutes direct
86
- or contributory patent infringement, then any patent licenses
87
- granted to You under this License for that Work shall terminate
88
- as of the date such litigation is filed.
89
-
90
- 4. Redistribution. You may reproduce and distribute copies of the
91
- Work or Derivative Works thereof in any medium, with or without
92
- modifications, and in Source or Object form, provided that You
93
- meet the following conditions:
94
-
95
- (a) You must give any other recipients of the Work or
96
- Derivative Works a copy of this License; and
97
-
98
- (b) You must cause any modified files to carry prominent notices
99
- stating that You changed the files; and
100
-
101
- (c) You must retain, in the Source form of any Derivative Works
102
- that You distribute, all copyright, patent, trademark, and
103
- attribution notices from the Source form of the Work,
104
- excluding those notices that do not pertain to any part of
105
- the Derivative Works; and
106
-
107
- (d) If the Work includes a "NOTICE" text file as part of its
108
- distribution, then any Derivative Works that You distribute must
109
- include a readable copy of the attribution notices contained
110
- within such NOTICE file, excluding those notices that do not
111
- pertain to any part of the Derivative Works, in at least one
112
- of the following places: within a NOTICE text file distributed
113
- as part of the Derivative Works; within the Source form or
114
- documentation, if provided along with the Derivative Works; or,
115
- within a display generated by the Derivative Works, if and
116
- wherever such third-party notices normally appear. The contents
117
- of the NOTICE file are for informational purposes only and
118
- do not modify the License. You may add Your own attribution
119
- notices within Derivative Works that You distribute, alongside
120
- or as an addendum to the NOTICE text from the Work, provided
121
- that such additional attribution notices cannot be construed
122
- as modifying the License.
123
-
124
- You may add Your own copyright statement to Your modifications and
125
- may provide additional or different license terms and conditions
126
- for use, reproduction, or distribution of Your modifications, or
127
- for any such Derivative Works as a whole, provided Your use,
128
- reproduction, and distribution of the Work otherwise complies with
129
- the conditions stated in this License.
130
-
131
- 5. Submission of Contributions. Unless You explicitly state otherwise,
132
- any Contribution intentionally submitted for inclusion in the Work
133
- by You to the Licensor shall be under the terms and conditions of
134
- this License, without any additional terms or conditions.
135
- Notwithstanding the above, nothing herein shall supersede or modify
136
- the terms of any separate license agreement you may have executed
137
- with Licensor regarding such Contributions.
138
-
139
- 6. Trademarks. This License does not grant permission to use the trade
140
- names, trademarks, service marks, or product names of the Licensor,
141
- except as required for reasonable and customary use in describing the
142
- origin of the Work and reproducing the content of the NOTICE file.
143
-
144
- 7. Disclaimer of Warranty. Unless required by applicable law or
145
- agreed to in writing, Licensor provides the Work (and each
146
- Contributor provides its Contributions) on an "AS IS" BASIS,
147
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
- implied, including, without limitation, any warranties or conditions
149
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
- PARTICULAR PURPOSE. You are solely responsible for determining the
151
- appropriateness of using or redistributing the Work and assume any
152
- risks associated with Your exercise of permissions under this License.
153
-
154
- 8. Limitation of Liability. In no event and under no legal theory,
155
- whether in tort (including negligence), contract, or otherwise,
156
- unless required by applicable law (such as deliberate and grossly
157
- negligent acts) or agreed to in writing, shall any Contributor be
158
- liable to You for damages, including any direct, indirect, special,
159
- incidental, or consequential damages of any character arising as a
160
- result of this License or out of the use or inability to use the
161
- Work (including but not limited to damages for loss of goodwill,
162
- work stoppage, computer failure or malfunction, or any and all
163
- other commercial damages or losses), even if such Contributor
164
- has been advised of the possibility of such damages.
165
-
166
- 9. Accepting Warranty or Additional Liability. While redistributing
167
- the Work or Derivative Works thereof, You may choose to offer,
168
- and charge a fee for, acceptance of support, warranty, indemnity,
169
- or other liability obligations and/or rights consistent with this
170
- License. However, in accepting such obligations, You may act only
171
- on Your own behalf and on Your sole responsibility, not on behalf
172
- of any other Contributor, and only if You agree to indemnify,
173
- defend, and hold each Contributor harmless for any liability
174
- incurred by, or claims asserted against, such Contributor by reason
175
- of your accepting any such warranty or additional liability.
176
-
177
- END OF TERMS AND CONDITIONS
178
-
179
- APPENDIX: How to apply the Apache License to your work.
180
-
181
- To apply the Apache License to your work, attach the following
182
- boilerplate notice, with the fields enclosed by brackets "[]"
183
- replaced with your own identifying information. (Don't include
184
- the brackets!) The text should be enclosed in the appropriate
185
- comment syntax for the file format. We also recommend that a
186
- file or class name and description of purpose be included on the
187
- same "printed page" as the copyright notice for easier
188
- identification within third-party archives.
189
-
190
- Copyright 2024 Databricks
191
-
192
- Licensed under the Apache License, Version 2.0 (the "License");
193
- you may not use this file except in compliance with the License.
194
- You may obtain a copy of the License at
195
-
196
- http://www.apache.org/licenses/LICENSE-2.0
197
-
198
- Unless required by applicable law or agreed to in writing, software
199
- distributed under the License is distributed on an "AS IS" BASIS,
200
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
- See the License for the specific language governing permissions and
202
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -50,12 +50,14 @@ We demonstrate generations as long as 80k tokens on a single A100-80GB GPU in ou
50
 
51
  * [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct): a model for short-form instruction following.
52
  Built by finetuning MPT-7B on a [dataset](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) we also release, derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
53
- * License: Apache 2.0
 
54
 
55
  * [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat): a chatbot-like model for dialogue generation.
56
  Built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3),
57
  [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets.
58
  * License: _CC-By-NC-SA-4.0_
 
59
 
60
  ## Model Date
61
 
@@ -130,22 +132,6 @@ from transformers import AutoTokenizer
130
  tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
131
  ```
132
 
133
- The model can then be used, for example, within a text-generation pipeline.
134
- Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
135
-
136
- ```python
137
- from transformers import pipeline
138
-
139
- pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
140
-
141
- with torch.autocast('cuda', dtype=torch.bfloat16):
142
- print(
143
- pipe('Here is a recipe for vegan banana bread:\n',
144
- max_new_tokens=100,
145
- do_sample=True,
146
- use_cache=True))
147
- ```
148
-
149
  ## Model Description
150
 
151
  The architecture is a modification of a standard decoder-only transformer.
@@ -237,10 +223,10 @@ Please cite this model using the following format:
237
  @online{MosaicML2023Introducing,
238
  author = {MosaicML NLP Team},
239
  title = {Introducing MPT-7B: A New Standard for Open-Source,
240
- Commercially Usable LLMs},
241
  year = {2023},
242
  url = {www.mosaicml.com/blog/mpt-7b},
243
- note = {Accessed: 2023-05-05},
244
- urldate = {2023-05-05}
245
  }
246
  ```
 
50
 
51
  * [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct): a model for short-form instruction following.
52
  Built by finetuning MPT-7B on a [dataset](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) we also release, derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
53
+ * License: _CC-By-SA-3.0_
54
+ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct)
55
 
56
  * [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat): a chatbot-like model for dialogue generation.
57
  Built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3),
58
  [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets.
59
  * License: _CC-By-NC-SA-4.0_
60
+ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-chat)
61
 
62
  ## Model Date
63
 
 
132
  tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
133
  ```
134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  ## Model Description
136
 
137
  The architecture is a modification of a standard decoder-only transformer.
 
223
  @online{MosaicML2023Introducing,
224
  author = {MosaicML NLP Team},
225
  title = {Introducing MPT-7B: A New Standard for Open-Source,
226
+ ly Usable LLMs},
227
  year = {2023},
228
  url = {www.mosaicml.com/blog/mpt-7b},
229
+ note = {Accessed: 2023-03-28}, % change this date
230
+ urldate = {2023-03-28} % change this date
231
  }
232
  ```
adapt_tokenizer.py CHANGED
@@ -1,8 +1,9 @@
1
- from typing import Any
2
- from transformers import AutoTokenizer, PreTrainedTokenizerBase
 
3
  NUM_SENTINEL_TOKENS: int = 100
4
 
5
- def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
6
  """Adds sentinel tokens and padding token (if missing).
7
 
8
  Expands the tokenizer vocabulary to include sentinel tokens
@@ -33,7 +34,7 @@ class AutoTokenizerForMOD(AutoTokenizer):
33
  """
34
 
35
  @classmethod
36
- def from_pretrained(cls, *args: Any, **kwargs: Any) -> PreTrainedTokenizerBase:
37
  """See `AutoTokenizer.from_pretrained` docstring."""
38
  tokenizer = super().from_pretrained(*args, **kwargs)
39
  adapt_tokenizer_for_denoising(tokenizer)
 
1
+ from typing import Union
2
+ from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
3
+ Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
4
  NUM_SENTINEL_TOKENS: int = 100
5
 
6
+ def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
7
  """Adds sentinel tokens and padding token (if missing).
8
 
9
  Expands the tokenizer vocabulary to include sentinel tokens
 
34
  """
35
 
36
  @classmethod
37
+ def from_pretrained(cls, *args, **kwargs):
38
  """See `AutoTokenizer.from_pretrained` docstring."""
39
  tokenizer = super().from_pretrained(*args, **kwargs)
40
  adapt_tokenizer_for_denoising(tokenizer)
attention.py CHANGED
@@ -1,42 +1,15 @@
1
  """Attention layers."""
2
  import math
3
  import warnings
4
- from typing import Any, Optional
5
  import torch
6
  import torch.nn as nn
7
- import transformers
8
  from einops import rearrange
9
  from packaging import version
10
  from torch import nn
11
- from .fc import FC_CLASS_REGISTRY
12
- from .norm import NORM_CLASS_REGISTRY
13
 
14
- def is_flash_v2_installed(v2_version: str='2.0.0'):
15
- assert version.parse(v2_version) >= version.parse('2.0.0')
16
- try:
17
- import flash_attn as flash_attn
18
- except:
19
- return False
20
- return version.parse(flash_attn.__version__) >= version.parse(v2_version)
21
-
22
- def is_flash_v1_installed():
23
- try:
24
- import flash_attn as flash_attn
25
- except:
26
- return False
27
- return version.parse(flash_attn.__version__) < version.parse('2.0.0')
28
-
29
- def is_transformers_version_gte(hf_version: str) -> bool:
30
- return version.parse(transformers.__version__) >= version.parse(hf_version)
31
-
32
- def check_alibi_support(attention_impl: str) -> bool:
33
- return attention_impl != 'flash' or is_flash_v2_installed(v2_version='v2.4.2')
34
- if is_flash_v1_installed():
35
- import transformers
36
- transformers.utils.is_flash_attn_available = lambda : False
37
- from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
38
-
39
- def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
40
  if original_is_causal and num_query_tokens != num_key_tokens:
41
  if num_query_tokens != 1:
42
  raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
@@ -44,21 +17,9 @@ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_cau
44
  return False
45
  return original_is_causal
46
 
47
- def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
48
- """Perform repeat of kv heads along a particular dimension.
49
-
50
- hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
51
- n_rep: amount of repetitions of kv_n_heads
52
- Unlike torch.repeat_interleave, this function avoids allocating new memory.
53
- """
54
- if n_rep == 1:
55
- return hidden
56
- (b, s, kv_n_heads, d) = hidden.shape
57
- hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
58
- return hidden.reshape(b, s, kv_n_heads * n_rep, d)
59
-
60
- def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
61
  q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
 
62
  k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
63
  v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
64
  if past_key_value is not None:
@@ -68,9 +29,6 @@ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tenso
68
  past_key_value = (k, v)
69
  (b, _, s_q, d) = q.shape
70
  s_k = k.size(-1)
71
- if kv_n_heads > 1 and kv_n_heads < n_heads:
72
- k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
73
- v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
74
  if softmax_scale is None:
75
  softmax_scale = 1 / math.sqrt(d)
76
  attn_weight = q.matmul(k) * softmax_scale
@@ -84,11 +42,11 @@ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tenso
84
  min_val = torch.finfo(q.dtype).min
85
  if key_padding_mask is not None:
86
  if attn_bias is not None:
87
- warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
88
  attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
89
  if is_causal and (not q.size(2) == 1):
90
  s = max(s_q, s_k)
91
- causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
92
  causal_mask = causal_mask.tril()
93
  causal_mask = causal_mask.to(torch.bool)
94
  causal_mask = ~causal_mask
@@ -97,79 +55,56 @@ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tenso
97
  attn_weight = torch.softmax(attn_weight, dim=-1)
98
  if dropout_p:
99
  attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
100
- out = attn_weight.to(v.dtype).matmul(v)
101
  out = rearrange(out, 'b h s d -> b s (h d)')
102
  if needs_weights:
103
  return (out, attn_weight, past_key_value)
104
  return (out, None, past_key_value)
105
 
106
- def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]]=None):
107
- if valid_dtypes is None:
108
- valid_dtypes = [torch.float16, torch.bfloat16]
109
  for tensor in tensors:
110
  if tensor.dtype not in valid_dtypes:
111
  raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
112
  if not tensor.is_cuda:
113
  raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
114
 
115
- def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
116
- if key_padding_mask is not None:
117
- raise ValueError('key_padding_mask should be None for flash attn.')
118
- del key_padding_mask
119
- if flash_attn_padding_info is None:
120
- raise ValueError('flash_attn_padding_info is required for flash attn.')
121
  try:
122
  from flash_attn import bert_padding, flash_attn_interface
123
  except:
124
- raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6')
125
  check_valid_inputs(query, key, value)
126
  if past_key_value is not None:
127
  if len(past_key_value) != 0:
128
  key = torch.cat([past_key_value[0], key], dim=1)
129
  value = torch.cat([past_key_value[1], value], dim=1)
130
  past_key_value = (key, value)
 
 
 
 
131
  if attn_bias is not None:
132
  raise NotImplementedError(f'attn_bias not implemented for flash attn.')
133
  (batch_size, seqlen) = query.shape[:2]
134
- indices_q = flash_attn_padding_info['indices_q']
135
- indices_k = flash_attn_padding_info['indices_k']
136
- indices_v = flash_attn_padding_info['indices_v']
137
- cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q']
138
- cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k']
139
- max_seqlen_q = flash_attn_padding_info['max_seqlen_q']
140
- max_seqlen_k = flash_attn_padding_info['max_seqlen_k']
141
- query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q)
142
  query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
143
- key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k)
144
- key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
145
- value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v)
146
- value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
147
- if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa):
148
- raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.')
149
- if should_repeat_kv_for_gqa:
150
- if kv_n_heads == 1:
151
- key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
152
- value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
153
- elif kv_n_heads < n_heads:
154
- key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1)
155
- value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1)
156
  dropout_p = dropout_p if training else 0.0
157
  reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
158
- if is_flash_v1_installed():
159
- output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
160
- elif is_flash_v2_installed():
161
- alibi_kwargs = {}
162
- if check_alibi_support('flash'):
163
- alibi_kwargs = {'alibi_slopes': alibi_slopes}
164
- elif alibi_slopes is not None:
165
- raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2')
166
- output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs)
167
- else:
168
- raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.')
169
  output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
170
  return (output, None, past_key_value)
171
 
172
- def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
173
  try:
174
  from .flash_attn_triton import flash_attn_func
175
  except:
@@ -181,7 +116,7 @@ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Te
181
  except:
182
  _installed = False
183
  if not _installed:
184
- raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
185
  check_valid_inputs(query, key, value)
186
  if past_key_value is not None:
187
  if len(past_key_value) != 0:
@@ -194,7 +129,6 @@ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Te
194
  attn_bias = attn_bias[:, :, _s_q:, _s_k:]
195
  if dropout_p:
196
  raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
197
- dropout_p = dropout_p if training else 0.0
198
  if needs_weights:
199
  raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
200
  if key_padding_mask is not None:
@@ -204,144 +138,124 @@ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Te
204
  attn_bias = query.new_zeros(b_size, 1, 1, s_k)
205
  attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
206
  query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
207
- key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
208
- value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
209
- if kv_n_heads == 1:
210
- key = key.repeat(1, 1, n_heads, 1)
211
- value = value.repeat(1, 1, n_heads, 1)
212
- elif kv_n_heads < n_heads:
213
- key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
214
- value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
215
  reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
216
  attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
217
  output = attn_output.view(*attn_output.shape[:2], -1)
218
  return (output, None, past_key_value)
219
 
220
- class GroupedQueryAttention(nn.Module):
221
- """Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
222
-
223
- and Multi-query attention (MQA).
224
 
225
- This allows the user to set a variable of number of kv_n_heads, rather than
226
- just n_heads or 1, as in MHA and MQA. Using torch or triton attention
227
- implementation enables user to also use additive bias.
228
  """
229
 
230
- def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
231
  super().__init__()
232
  self.attn_impl = attn_impl
233
  self.clip_qkv = clip_qkv
234
  self.qk_ln = qk_ln
235
- self.qk_gn = qk_gn
236
  self.d_model = d_model
237
  self.n_heads = n_heads
238
- self.kv_n_heads = kv_n_heads
239
- self.sliding_window_size = sliding_window_size
240
- self.head_dim = d_model // n_heads
241
- if self.kv_n_heads <= 0:
242
- raise ValueError('kv_n_heads should be greater than zero.')
243
- if self.kv_n_heads > self.n_heads:
244
- raise ValueError('The number of KV heads should be less than or equal to Q heads.')
245
- if self.n_heads % self.kv_n_heads != 0:
246
- raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
247
- if qk_ln and qk_gn:
248
- raise ValueError('Only one of qk_ln and qk_gn can be set to True.')
249
  self.softmax_scale = softmax_scale
250
  if self.softmax_scale is None:
251
  self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
252
  self.attn_dropout_p = attn_pdrop
253
- fc_kwargs: dict[str, Any] = {'bias': bias}
254
- if fc_type != 'te':
255
- fc_kwargs['device'] = device
256
- self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
257
- fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
258
  self.Wqkv._fused = (0, fuse_splits)
259
- if self.qk_ln or self.qk_gn:
260
- norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
261
- norm_size = self.head_dim if qk_gn else d_model
262
- self.q_ln = norm_class(norm_size, device=device)
263
- if qk_ln:
264
- norm_size = self.head_dim * kv_n_heads
265
- self.k_ln = norm_class(norm_size, device=device)
266
  if self.attn_impl == 'flash':
267
  self.attn_fn = flash_attn_fn
268
  elif self.attn_impl == 'triton':
269
  self.attn_fn = triton_flash_attn_fn
 
 
270
  elif self.attn_impl == 'torch':
271
  self.attn_fn = scaled_multihead_dot_product_attention
 
 
272
  else:
273
  raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
274
- self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
275
  self.out_proj._is_residual = True
276
 
277
- def forward(self, x: torch.Tensor, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[dict]=None, is_causal: bool=True, needs_weights: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
278
  qkv = self.Wqkv(x)
279
  if self.clip_qkv:
280
- qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
281
- (query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
282
  key_padding_mask = attention_mask
283
- if self.qk_ln or self.qk_gn:
284
- (q_shape, k_shape) = (query.shape, key.shape)
285
- if self.qk_gn:
286
- (b, s) = query.shape[:2]
287
- query = query.view(b, s, self.n_heads, -1)
288
- key = key.view(b, s, self.kv_n_heads, -1)
289
  dtype = query.dtype
290
- query = self.q_ln(query).to(dtype).view(q_shape)
291
- key = self.k_ln(key).to(dtype).view(k_shape)
292
- if rotary_emb_w_meta_info is not None:
293
- rotary_emb = rotary_emb_w_meta_info['rotary_emb']
294
- seq_len = rotary_emb_w_meta_info['seq_len']
295
- offset_info = rotary_emb_w_meta_info['offset_info']
296
- (bsz, seqlen) = query.shape[:2]
297
- query = query.view(bsz, seqlen, -1, self.head_dim)
298
- key = key.view(bsz, seqlen, -1, self.head_dim)
299
- if rotary_emb_w_meta_info['impl'] == 'dail':
300
- value = value.view(bsz, seqlen, -1, self.head_dim)
301
- kv = torch.stack([key, value], dim=2)
302
- (query, kv) = rotary_emb(query, kv, seqlen_offset=offset_info, max_seqlen=seq_len)
303
- [key, value] = torch.unbind(kv, dim=2)
304
- value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
305
- elif rotary_emb_w_meta_info['impl'] == 'hf':
306
- (cos, sin) = rotary_emb(value, seq_len)
307
- if is_transformers_version_gte('4.36'):
308
- (query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info, unsqueeze_dim=2)
309
- else:
310
- query = query.transpose(1, 2)
311
- key = key.transpose(1, 2)
312
- (query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info)
313
- query = query.transpose(1, 2)
314
- key = key.transpose(1, 2)
315
- query = query.view(bsz, seqlen, self.d_model)
316
- key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
317
- extra_attn_kwargs = {}
318
- if self.attn_impl == 'flash':
319
- key_padding_mask = None
320
- extra_attn_kwargs = {'should_repeat_kv_for_gqa': not is_flash_v2_installed(), 'sliding_window_size': self.sliding_window_size, 'alibi_slopes': alibi_slopes, 'flash_attn_padding_info': flash_attn_padding_info}
321
- (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, **extra_attn_kwargs)
322
  return (self.out_proj(context), attn_weights, past_key_value)
323
 
324
- class MultiheadAttention(GroupedQueryAttention):
325
- """Multi-head self attention.
326
-
327
- Using torch or triton attention implementation enables user to also use
328
- additive bias.
329
- """
330
-
331
- def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
332
- super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
333
-
334
- class MultiQueryAttention(GroupedQueryAttention):
335
  """Multi-Query self attention.
336
 
337
- Using torch or triton attention implementation enables user to also use
338
  additive bias.
339
  """
340
 
341
- def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
342
- super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343
 
344
- def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[tuple[int, int, int, int]]:
345
  if attn_impl == 'flash':
346
  return None
347
  elif attn_impl in ['torch', 'triton']:
@@ -355,7 +269,7 @@ def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, pre
355
  else:
356
  raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
357
 
358
- def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
359
  if attn_impl == 'flash':
360
  return None
361
  elif attn_impl in ['torch', 'triton']:
@@ -366,18 +280,16 @@ def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_l
366
  else:
367
  raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
368
 
369
- def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None, return_1d: bool=False) -> torch.Tensor:
370
  _n_heads = 2 ** math.ceil(math.log2(n_heads))
371
  m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
372
  m = m.mul(alibi_bias_max / _n_heads)
373
  slopes = 1.0 / torch.pow(2, m)
374
  if _n_heads != n_heads:
375
  slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
376
- if return_1d:
377
- return slopes
378
  return slopes.view(1, n_heads, 1, 1)
379
 
380
- def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
381
  alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
382
  if full:
383
  alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
@@ -385,4 +297,4 @@ def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_ma
385
  slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
386
  alibi_bias = alibi_bias * slopes
387
  return alibi_bias.to(dtype=dtype)
388
- ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}
 
1
  """Attention layers."""
2
  import math
3
  import warnings
4
+ from typing import Optional
5
  import torch
6
  import torch.nn as nn
 
7
  from einops import rearrange
8
  from packaging import version
9
  from torch import nn
10
+ from .norm import LPLayerNorm
 
11
 
12
+ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  if original_is_causal and num_query_tokens != num_key_tokens:
14
  if num_query_tokens != 1:
15
  raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
 
17
  return False
18
  return original_is_causal
19
 
20
+ def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
22
+ kv_n_heads = 1 if multiquery else n_heads
23
  k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
24
  v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
25
  if past_key_value is not None:
 
29
  past_key_value = (k, v)
30
  (b, _, s_q, d) = q.shape
31
  s_k = k.size(-1)
 
 
 
32
  if softmax_scale is None:
33
  softmax_scale = 1 / math.sqrt(d)
34
  attn_weight = q.matmul(k) * softmax_scale
 
42
  min_val = torch.finfo(q.dtype).min
43
  if key_padding_mask is not None:
44
  if attn_bias is not None:
45
+ warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
46
  attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
47
  if is_causal and (not q.size(2) == 1):
48
  s = max(s_q, s_k)
49
+ causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
50
  causal_mask = causal_mask.tril()
51
  causal_mask = causal_mask.to(torch.bool)
52
  causal_mask = ~causal_mask
 
55
  attn_weight = torch.softmax(attn_weight, dim=-1)
56
  if dropout_p:
57
  attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
58
+ out = attn_weight.matmul(v)
59
  out = rearrange(out, 'b h s d -> b s (h d)')
60
  if needs_weights:
61
  return (out, attn_weight, past_key_value)
62
  return (out, None, past_key_value)
63
 
64
+ def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
 
 
65
  for tensor in tensors:
66
  if tensor.dtype not in valid_dtypes:
67
  raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
68
  if not tensor.is_cuda:
69
  raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
70
 
71
+ def flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
 
 
 
 
 
72
  try:
73
  from flash_attn import bert_padding, flash_attn_interface
74
  except:
75
+ raise RuntimeError('Please install flash-attn==1.0.3.post0')
76
  check_valid_inputs(query, key, value)
77
  if past_key_value is not None:
78
  if len(past_key_value) != 0:
79
  key = torch.cat([past_key_value[0], key], dim=1)
80
  value = torch.cat([past_key_value[1], value], dim=1)
81
  past_key_value = (key, value)
82
+ if attn_bias is not None:
83
+ _s_q = max(0, attn_bias.size(2) - query.size(1))
84
+ _s_k = max(0, attn_bias.size(3) - key.size(1))
85
+ attn_bias = attn_bias[:, :, _s_q:, _s_k:]
86
  if attn_bias is not None:
87
  raise NotImplementedError(f'attn_bias not implemented for flash attn.')
88
  (batch_size, seqlen) = query.shape[:2]
89
+ if key_padding_mask is None:
90
+ key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
91
+ query_padding_mask = key_padding_mask[:, -query.size(1):]
92
+ (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
 
 
 
 
93
  query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
94
+ (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
95
+ key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
96
+ (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
97
+ value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
98
+ if multiquery:
99
+ key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
100
+ value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
 
 
 
 
 
 
101
  dropout_p = dropout_p if training else 0.0
102
  reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
103
+ output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
 
 
 
 
 
 
 
 
 
 
104
  output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
105
  return (output, None, past_key_value)
106
 
107
+ def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
108
  try:
109
  from .flash_attn_triton import flash_attn_func
110
  except:
 
116
  except:
117
  _installed = False
118
  if not _installed:
119
+ raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
120
  check_valid_inputs(query, key, value)
121
  if past_key_value is not None:
122
  if len(past_key_value) != 0:
 
129
  attn_bias = attn_bias[:, :, _s_q:, _s_k:]
130
  if dropout_p:
131
  raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
 
132
  if needs_weights:
133
  raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
134
  if key_padding_mask is not None:
 
138
  attn_bias = query.new_zeros(b_size, 1, 1, s_k)
139
  attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
140
  query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
141
+ key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
142
+ value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
143
+ if multiquery:
144
+ key = key.expand(*key.shape[:2], n_heads, key.size(-1))
145
+ value = value.expand(*value.shape[:2], n_heads, value.size(-1))
 
 
 
146
  reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
147
  attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
148
  output = attn_output.view(*attn_output.shape[:2], -1)
149
  return (output, None, past_key_value)
150
 
151
+ class MultiheadAttention(nn.Module):
152
+ """Multi-head self attention.
 
 
153
 
154
+ Using torch or triton attention implemetation enables user to also use
155
+ additive bias.
 
156
  """
157
 
158
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
159
  super().__init__()
160
  self.attn_impl = attn_impl
161
  self.clip_qkv = clip_qkv
162
  self.qk_ln = qk_ln
 
163
  self.d_model = d_model
164
  self.n_heads = n_heads
 
 
 
 
 
 
 
 
 
 
 
165
  self.softmax_scale = softmax_scale
166
  if self.softmax_scale is None:
167
  self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
168
  self.attn_dropout_p = attn_pdrop
169
+ self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
170
+ fuse_splits = (d_model, 2 * d_model)
 
 
 
171
  self.Wqkv._fused = (0, fuse_splits)
172
+ if self.qk_ln:
173
+ layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
174
+ self.q_ln = layernorm_class(self.d_model, device=device)
175
+ self.k_ln = layernorm_class(self.d_model, device=device)
 
 
 
176
  if self.attn_impl == 'flash':
177
  self.attn_fn = flash_attn_fn
178
  elif self.attn_impl == 'triton':
179
  self.attn_fn = triton_flash_attn_fn
180
+ if verbose:
181
+ warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
182
  elif self.attn_impl == 'torch':
183
  self.attn_fn = scaled_multihead_dot_product_attention
184
+ if torch.cuda.is_available() and verbose:
185
+ warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
186
  else:
187
  raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
188
+ self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
189
  self.out_proj._is_residual = True
190
 
191
+ def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
192
  qkv = self.Wqkv(x)
193
  if self.clip_qkv:
194
+ qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
195
+ (query, key, value) = qkv.chunk(3, dim=2)
196
  key_padding_mask = attention_mask
197
+ if self.qk_ln:
 
 
 
 
 
198
  dtype = query.dtype
199
+ query = self.q_ln(query).to(dtype)
200
+ key = self.k_ln(key).to(dtype)
201
+ (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
  return (self.out_proj(context), attn_weights, past_key_value)
203
 
204
+ class MultiQueryAttention(nn.Module):
 
 
 
 
 
 
 
 
 
 
205
  """Multi-Query self attention.
206
 
207
+ Using torch or triton attention implemetation enables user to also use
208
  additive bias.
209
  """
210
 
211
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
212
+ super().__init__()
213
+ self.attn_impl = attn_impl
214
+ self.clip_qkv = clip_qkv
215
+ self.qk_ln = qk_ln
216
+ self.d_model = d_model
217
+ self.n_heads = n_heads
218
+ self.head_dim = d_model // n_heads
219
+ self.softmax_scale = softmax_scale
220
+ if self.softmax_scale is None:
221
+ self.softmax_scale = 1 / math.sqrt(self.head_dim)
222
+ self.attn_dropout_p = attn_pdrop
223
+ self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
224
+ fuse_splits = (d_model, d_model + self.head_dim)
225
+ self.Wqkv._fused = (0, fuse_splits)
226
+ if self.qk_ln:
227
+ layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
228
+ self.q_ln = layernorm_class(d_model, device=device)
229
+ self.k_ln = layernorm_class(self.head_dim, device=device)
230
+ if self.attn_impl == 'flash':
231
+ self.attn_fn = flash_attn_fn
232
+ elif self.attn_impl == 'triton':
233
+ self.attn_fn = triton_flash_attn_fn
234
+ if verbose:
235
+ warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
236
+ elif self.attn_impl == 'torch':
237
+ self.attn_fn = scaled_multihead_dot_product_attention
238
+ if torch.cuda.is_available() and verbose:
239
+ warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
240
+ else:
241
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
242
+ self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
243
+ self.out_proj._is_residual = True
244
+
245
+ def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
246
+ qkv = self.Wqkv(x)
247
+ if self.clip_qkv:
248
+ qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
249
+ (query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
250
+ key_padding_mask = attention_mask
251
+ if self.qk_ln:
252
+ dtype = query.dtype
253
+ query = self.q_ln(query).to(dtype)
254
+ key = self.k_ln(key).to(dtype)
255
+ (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
256
+ return (self.out_proj(context), attn_weights, past_key_value)
257
 
258
+ def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
259
  if attn_impl == 'flash':
260
  return None
261
  elif attn_impl in ['torch', 'triton']:
 
269
  else:
270
  raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
271
 
272
+ def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
273
  if attn_impl == 'flash':
274
  return None
275
  elif attn_impl in ['torch', 'triton']:
 
280
  else:
281
  raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
282
 
283
+ def gen_slopes(n_heads, alibi_bias_max=8, device=None):
284
  _n_heads = 2 ** math.ceil(math.log2(n_heads))
285
  m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
286
  m = m.mul(alibi_bias_max / _n_heads)
287
  slopes = 1.0 / torch.pow(2, m)
288
  if _n_heads != n_heads:
289
  slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
 
 
290
  return slopes.view(1, n_heads, 1, 1)
291
 
292
+ def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
293
  alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
294
  if full:
295
  alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
 
297
  slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
298
  alibi_bias = alibi_bias * slopes
299
  return alibi_bias.to(dtype=dtype)
300
+ ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
blocks.py CHANGED
@@ -1,55 +1,41 @@
1
  """GPT Blocks used for the GPT Model."""
2
- from typing import Any, Dict, Optional, Tuple
3
  import torch
4
  import torch.nn as nn
5
  from .attention import ATTN_CLASS_REGISTRY
6
- from .ffn import FFN_CLASS_REGISTRY, build_ffn
7
  from .norm import NORM_CLASS_REGISTRY
8
- try:
9
- from flash_attn.bert_padding import unpad_input, pad_input
10
- except:
11
- (unpad_input, pad_input) = (None, None)
12
- attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'qk_gn': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'sliding_window_size': -1, 'alibi': False, 'alibi_bias_max': 8, 'rope': False, 'rope_theta': 10000, 'rope_impl': 'dail', 'rope_dail_config': {'type': 'original', 'pos_idx_in_fp32': True, 'xpos_scale_base': 512}, 'rope_hf_config': {'type': 'no_scaling', 'factor': 1.0}}
 
 
 
 
 
 
 
13
 
14
  class MPTBlock(nn.Module):
15
 
16
- def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
17
- if attn_config is None:
18
- attn_config = attn_config_defaults
19
- if ffn_config is None:
20
- ffn_config = {'ffn_type': 'mptmlp'}
21
  del kwargs
22
  super().__init__()
23
  norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
24
- assert isinstance(attn_config['attn_type'], str)
25
  attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
26
- args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max', 'rope', 'rope_theta', 'rope_impl', 'rope_dail_config', 'rope_hf_config'}
27
- attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
28
  self.norm_1 = norm_class(d_model, device=device)
29
- self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
30
- self.norm_2 = None
31
- if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
32
- self.norm_2 = norm_class(d_model, device=device)
33
- self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
34
  self.resid_attn_dropout = nn.Dropout(resid_pdrop)
35
  self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
36
- self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
37
 
38
- def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[Dict]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
39
  a = self.norm_1(x)
40
- (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions, alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
41
  x = x + self.resid_attn_dropout(b)
42
- m = x
43
- if self.norm_2 is not None:
44
- m = self.norm_2(x)
45
- (batch_size, seq_len) = m.size()[:2]
46
- indices = None
47
- if not self.use_pad_tok_in_ffn:
48
- assert unpad_input is not None
49
- (m, indices, _, _) = unpad_input(m, attention_mask)
50
  n = self.ffn(m)
51
- if not self.use_pad_tok_in_ffn:
52
- assert pad_input is not None
53
- n = pad_input(n, indices, batch_size, seq_len)
54
  x = x + self.resid_ffn_dropout(n)
55
  return (x, attn_weights, past_key_value)
 
1
  """GPT Blocks used for the GPT Model."""
2
+ from typing import Dict, Optional, Tuple
3
  import torch
4
  import torch.nn as nn
5
  from .attention import ATTN_CLASS_REGISTRY
 
6
  from .norm import NORM_CLASS_REGISTRY
7
+
8
+ class MPTMLP(nn.Module):
9
+
10
+ def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
11
+ super().__init__()
12
+ self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
13
+ self.act = nn.GELU(approximate='none')
14
+ self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
15
+ self.down_proj._is_residual = True
16
+
17
+ def forward(self, x):
18
+ return self.down_proj(self.act(self.up_proj(x)))
19
 
20
  class MPTBlock(nn.Module):
21
 
22
+ def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', verbose: int=0, device: Optional[str]=None, **kwargs):
 
 
 
 
23
  del kwargs
24
  super().__init__()
25
  norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
 
26
  attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
 
 
27
  self.norm_1 = norm_class(d_model, device=device)
28
+ self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, verbose=verbose, device=device)
29
+ self.norm_2 = norm_class(d_model, device=device)
30
+ self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
 
 
31
  self.resid_attn_dropout = nn.Dropout(resid_pdrop)
32
  self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
 
33
 
34
+ def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
35
  a = self.norm_1(x)
36
+ (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
37
  x = x + self.resid_attn_dropout(b)
38
+ m = self.norm_2(x)
 
 
 
 
 
 
 
39
  n = self.ffn(m)
 
 
 
40
  x = x + self.resid_ffn_dropout(n)
41
  return (x, attn_weights, past_key_value)
configuration_mpt.py CHANGED
@@ -1,38 +1,30 @@
1
  """A HuggingFace-style model configuration."""
2
- import warnings
3
- from typing import Any, Dict, Optional, Union
4
  from transformers import PretrainedConfig
5
- from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
6
- from .blocks import attn_config_defaults
7
- from .fc import FC_CLASS_REGISTRY
8
- from .norm import LPLayerNorm
9
- from .ffn import FFN_CLASS_REGISTRY
10
- from .warnings import VersionedDeprecationWarning
11
- ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
12
  init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
13
 
14
  class MPTConfig(PretrainedConfig):
15
  model_type = 'mpt'
16
 
17
- def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: Union[int, float]=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', tie_word_embeddings: bool=True, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
18
  """The MPT configuration class.
19
 
20
  Args:
21
  d_model (int): The size of the embedding dimension of the model.
22
  n_heads (int): The number of attention heads.
23
  n_layers (int): The number of layers in the model.
24
- expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
25
  max_seq_len (int): The maximum sequence length of the model.
26
  vocab_size (int): The size of the vocabulary.
27
  resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
28
  emb_pdrop (float): The dropout probability for the embedding layer.
29
  learned_pos_emb (bool): Whether to use learned positional embeddings
30
- attn_config (Dict): A dictionary used to configure the model's attention module:
31
- attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
32
  attn_pdrop (float): The dropout probability for the attention layers.
33
  attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
34
  qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
35
- qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
36
  clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
37
  this value.
38
  softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
@@ -44,27 +36,15 @@ class MPTConfig(PretrainedConfig):
44
  When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
45
  which sub-sequence each token belongs to.
46
  Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
47
- sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
48
  alibi (bool): Whether to use the alibi bias instead of position embeddings.
49
  alibi_bias_max (int): The maximum value of the alibi bias.
50
- rope (bool): Whether to use rotary positional embeddings.
51
- rope_theta (int): The base frequency for rope.
52
- rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
53
- rope_dail_config (Dict): The configuration for the dail implementation of rope.
54
- type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
55
- pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
56
- xpos_scale_base (float): The scale base for XPos (if using XPos).
57
- rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
58
- type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
59
- factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
60
- kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
61
- ffn_config (Dict): A dictionary used to configure the model's ffn module:
62
- ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
63
  init_device (str): The device to use for parameter initialization.
64
  logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
65
  no_bias (bool): Whether to use bias in all layers.
 
66
  embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
67
  norm_type (str): choose type of norm to use
 
68
  use_cache (bool): Whether or not the model should return the last key/values attentions
69
  init_config (Dict): A dictionary used to configure the model initialization:
70
  init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
@@ -81,9 +61,6 @@ class MPTConfig(PretrainedConfig):
81
  init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
82
  ---
83
  See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
84
- fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
85
- tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
86
- use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
87
  """
88
  self.d_model = d_model
89
  self.n_heads = n_heads
@@ -95,37 +72,29 @@ class MPTConfig(PretrainedConfig):
95
  self.emb_pdrop = emb_pdrop
96
  self.learned_pos_emb = learned_pos_emb
97
  self.attn_config = attn_config
98
- self.ffn_config = ffn_config
99
  self.init_device = init_device
100
  self.logit_scale = logit_scale
101
  self.no_bias = no_bias
 
102
  self.embedding_fraction = embedding_fraction
103
  self.norm_type = norm_type
104
  self.use_cache = use_cache
105
  self.init_config = init_config
106
- self.fc_type = fc_type
107
- self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
108
  if 'name' in kwargs:
109
  del kwargs['name']
110
  if 'loss_fn' in kwargs:
111
  del kwargs['loss_fn']
112
- if self.attn_config.get('alibi', False) or self.attn_config.get('rope', False):
113
- self.learned_pos_emb = False
114
- warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')
115
- super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
116
  self._validate_config()
117
 
118
- def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
119
  for (k, v) in config_defaults.items():
120
  if k not in config:
121
  config[k] = v
122
- elif isinstance(v, dict):
123
- config[k] = self._set_config_defaults(config[k] if config[k] is not None else {}, v)
124
  return config
125
 
126
- def _validate_config(self) -> None:
127
  self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
128
- self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
129
  self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
130
  if self.d_model % self.n_heads != 0:
131
  raise ValueError('d_model must be divisible by n_heads')
@@ -135,49 +104,15 @@ class MPTConfig(PretrainedConfig):
135
  raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
136
  if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
137
  raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
138
- if self.attn_config['attn_impl'] == 'flash' and is_flash_v1_installed():
139
- warnings.warn(VersionedDeprecationWarning('Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.', remove_version='0.6.0'))
140
- if self.attn_config['attn_impl'] == 'triton' and (not self.attn_config['prefix_lm']):
141
- warnings.warn(UserWarning('If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'))
142
- if self.attn_config['alibi'] and (not check_alibi_support(self.attn_config['attn_impl'])):
143
- raise NotImplementedError('alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention.')
144
- if self.attn_config['attn_uses_sequence_id'] and (not (self.attn_config['attn_impl'] in ['torch', 'triton'] or (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.1.2')))):
145
- raise NotImplementedError('attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention.')
146
- if self.attn_config['rope'] and self.attn_config['rope_impl'] not in ['dail', 'hf']:
147
- raise ValueError('If rope is being used then rope_impl should be either "dail", or "hf".')
148
- if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'hf' and (self.attn_config['rope_hf_config']['type'] not in ['no_scaling', 'linear', 'dynamic']):
149
- raise ValueError('If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".')
150
- if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'dail':
151
- if self.attn_config['rope_dail_config']['type'] not in ['original', 'xpos']:
152
- raise ValueError('If using the dail implementation of rope, the type should be one of "original" or "xpos".')
153
- if not is_flash_v2_installed(v2_version='2.0.1'):
154
- raise ImportError('If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support')
155
- if self.attn_config['sliding_window_size'] != -1 and (not (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.3.0'))):
156
- raise NotImplementedError('sliding window only implemented with flash attention v2.3.0 or higher.')
157
  if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
158
  raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
159
  if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
160
  raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
161
  if self.init_config.get('name', None) is None:
162
  raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
163
- if not (self.learned_pos_emb or self.attn_config['alibi'] or self.attn_config['rope']):
164
- warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi or rope.')
165
- if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
166
- try:
167
- import transformer_engine.pytorch as te
168
- del te
169
- except:
170
- raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
171
- if self.ffn_config['ffn_type'] == 'mptgeglu':
172
- raise ValueError('API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. ' + 'See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details.')
173
- elif self.ffn_config['ffn_type'] in ['mptmlp', 'mptglu']:
174
- self.ffn_config['fc_type'] = self.fc_type
175
- elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
176
- self.ffn_config['bias'] = not self.no_bias
177
- if 'ffn_act_fn' in self.ffn_config.keys():
178
- raise ValueError(f'Transformer Engine block does not support custom activation functions.')
179
- if not self.use_pad_tok_in_ffn:
180
- try:
181
- from flash_attn.bert_padding import unpad_input, pad_input
182
- except:
183
- raise ImportError('In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6')
 
1
  """A HuggingFace-style model configuration."""
2
+ from typing import Dict, Optional, Union
 
3
  from transformers import PretrainedConfig
4
+ attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
 
 
 
 
 
 
5
  init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
6
 
7
  class MPTConfig(PretrainedConfig):
8
  model_type = 'mpt'
9
 
10
+ def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs):
11
  """The MPT configuration class.
12
 
13
  Args:
14
  d_model (int): The size of the embedding dimension of the model.
15
  n_heads (int): The number of attention heads.
16
  n_layers (int): The number of layers in the model.
17
+ expansion_ratio (int): The ratio of the up/down scale in the MLP.
18
  max_seq_len (int): The maximum sequence length of the model.
19
  vocab_size (int): The size of the vocabulary.
20
  resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
21
  emb_pdrop (float): The dropout probability for the embedding layer.
22
  learned_pos_emb (bool): Whether to use learned positional embeddings
23
+ attn_config (Dict): A dictionary used to configure the model's attention module:
24
+ attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
25
  attn_pdrop (float): The dropout probability for the attention layers.
26
  attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
27
  qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
 
28
  clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
29
  this value.
30
  softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
 
36
  When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
37
  which sub-sequence each token belongs to.
38
  Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
 
39
  alibi (bool): Whether to use the alibi bias instead of position embeddings.
40
  alibi_bias_max (int): The maximum value of the alibi bias.
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  init_device (str): The device to use for parameter initialization.
42
  logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
43
  no_bias (bool): Whether to use bias in all layers.
44
+ verbose (int): The verbosity level. 0 is silent.
45
  embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
46
  norm_type (str): choose type of norm to use
47
+ multiquery_attention (bool): Whether to use multiquery attention implementation.
48
  use_cache (bool): Whether or not the model should return the last key/values attentions
49
  init_config (Dict): A dictionary used to configure the model initialization:
50
  init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
 
61
  init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
62
  ---
63
  See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
 
 
 
64
  """
65
  self.d_model = d_model
66
  self.n_heads = n_heads
 
72
  self.emb_pdrop = emb_pdrop
73
  self.learned_pos_emb = learned_pos_emb
74
  self.attn_config = attn_config
 
75
  self.init_device = init_device
76
  self.logit_scale = logit_scale
77
  self.no_bias = no_bias
78
+ self.verbose = verbose
79
  self.embedding_fraction = embedding_fraction
80
  self.norm_type = norm_type
81
  self.use_cache = use_cache
82
  self.init_config = init_config
 
 
83
  if 'name' in kwargs:
84
  del kwargs['name']
85
  if 'loss_fn' in kwargs:
86
  del kwargs['loss_fn']
87
+ super().__init__(**kwargs)
 
 
 
88
  self._validate_config()
89
 
90
+ def _set_config_defaults(self, config, config_defaults):
91
  for (k, v) in config_defaults.items():
92
  if k not in config:
93
  config[k] = v
 
 
94
  return config
95
 
96
+ def _validate_config(self):
97
  self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
 
98
  self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
99
  if self.d_model % self.n_heads != 0:
100
  raise ValueError('d_model must be divisible by n_heads')
 
104
  raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
105
  if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
106
  raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
107
+ if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
108
+ raise NotImplementedError('alibi only implemented with torch and triton attention.')
109
+ if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
110
+ raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
112
  raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
113
  if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
114
  raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
115
  if self.init_config.get('name', None) is None:
116
  raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
117
+ if not self.learned_pos_emb and (not self.attn_config['alibi']):
118
+ raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
custom_embedding.py CHANGED
@@ -1,10 +1,12 @@
 
1
  import torch.nn as nn
2
  import torch.nn.functional as F
3
  from torch import Tensor
4
 
 
5
  class SharedEmbedding(nn.Embedding):
6
 
7
- def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
8
  if unembed:
9
  return F.linear(input, self.weight)
10
  return super().forward(input)
 
1
+ import torch
2
  import torch.nn as nn
3
  import torch.nn.functional as F
4
  from torch import Tensor
5
 
6
+
7
  class SharedEmbedding(nn.Embedding):
8
 
9
+ def forward(self, input: Tensor, unembed: bool = False) -> Tensor:
10
  if unembed:
11
  return F.linear(input, self.weight)
12
  return super().forward(input)
fc.py DELETED
@@ -1,7 +0,0 @@
1
- from torch import nn
2
- FC_CLASS_REGISTRY = {'torch': nn.Linear}
3
- try:
4
- import transformer_engine.pytorch as te
5
- FC_CLASS_REGISTRY['te'] = te.Linear
6
- except:
7
- pass
 
 
 
 
 
 
 
 
ffn.py DELETED
@@ -1,97 +0,0 @@
1
- """MPT Blocks used for the MPT Model."""
2
- import logging
3
- from copy import deepcopy
4
- from functools import partial
5
- from typing import Any, Callable, Optional, Union
6
- import torch
7
- import torch.nn as nn
8
- from .fc import FC_CLASS_REGISTRY
9
- try:
10
- import transformer_engine.pytorch as te
11
- except:
12
- te = None
13
- log = logging.getLogger(__name__)
14
- _FFN_ACT_FN_DEFAULT = {'name': 'gelu', 'approximate': 'none'}
15
-
16
- def resolve_ffn_act_fn(config: Optional[dict]=None) -> Callable[[torch.Tensor], torch.Tensor]:
17
- """Resolve the activation function for the feed-forward network.
18
-
19
- Args:
20
- config (Optional[dict]): The configuration dictionary for the activation function.
21
- The dict config must specify the 'name' of a torch.nn.functional activation
22
- function. All of other key values pairs are bound to the function as a partial.
23
-
24
- Returns:
25
- Callable[[torch.Tensor], torch.Tensor]: The activation function.
26
- """
27
- if config is None:
28
- config = _FFN_ACT_FN_DEFAULT
29
- config = deepcopy(config)
30
- name = config.pop('name')
31
- if not hasattr(torch.nn.functional, name):
32
- raise ValueError(f'Unrecognised activation function name ({name}).')
33
- act = getattr(torch.nn.functional, name)
34
- return partial(act, **config)
35
- _DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT)
36
-
37
- def resolve_ffn_hidden_size(d_model: int, expansion_ratio: Union[int, float], ffn_hidden_size: Optional[int]=None) -> int:
38
- """Resolve the hidden size of the feed-forward network.
39
-
40
- Args:
41
- d_model (int): The dimension of the input and output of the feed-forward network.
42
- expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network.
43
- ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network.
44
-
45
- Returns:
46
- int: The hidden size of the feed-forward network.
47
- """
48
- if ffn_hidden_size is not None:
49
- log.info(f'`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified.')
50
- else:
51
- ffn_hidden_size = int(d_model * expansion_ratio)
52
- if ffn_hidden_size != d_model * expansion_ratio:
53
- raise ValueError(f'`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r}).')
54
- return ffn_hidden_size
55
-
56
- class MPTMLP(nn.Module):
57
-
58
- def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
59
- super().__init__()
60
- ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
61
- self.fc_kwargs: dict[str, Any] = {'bias': bias}
62
- if fc_type != 'te':
63
- self.fc_kwargs['device'] = device
64
- self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, ffn_hidden_size, **self.fc_kwargs)
65
- self.act = act_fn
66
- self.down_proj = FC_CLASS_REGISTRY[fc_type](ffn_hidden_size, d_model, **self.fc_kwargs)
67
- self.down_proj._is_residual = True
68
-
69
- def forward(self, x: torch.Tensor) -> torch.Tensor:
70
- return self.down_proj(self.act(self.up_proj(x)))
71
-
72
- class MPTGLU(MPTMLP):
73
-
74
- def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
75
- super().__init__(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, ffn_hidden_size=ffn_hidden_size, act_fn=act_fn, device=device, bias=bias)
76
- self.gate_proj = FC_CLASS_REGISTRY[fc_type](d_model, self.up_proj.out_features, **self.fc_kwargs)
77
-
78
- def forward(self, x: torch.Tensor) -> torch.Tensor:
79
- return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
80
- FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP, 'mptglu': MPTGLU}
81
- if te is not None:
82
- te.LayerNormMLP._has_norm = True
83
- FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
84
-
85
- def build_ffn(d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, ffn_act_fn: Optional[dict]=None, device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
86
- ffn_type = kwargs.pop('ffn_type')
87
- if ffn_type in ['mptmlp', 'mptglu']:
88
- if len(kwargs) > 0:
89
- raise ValueError(f'MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}')
90
- return FFN_CLASS_REGISTRY[ffn_type](d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, act_fn=resolve_ffn_act_fn(ffn_act_fn), ffn_hidden_size=ffn_hidden_size, device=device, bias=bias)
91
- elif ffn_type == 'te_ln_mlp':
92
- assert te is not None
93
- ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
94
- if ffn_act_fn is not None:
95
- raise ValueError(f'Transformer Engine block does not support custom activation functions.')
96
- return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs)
97
- raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hf_prefixlm_converter.py CHANGED
@@ -6,13 +6,23 @@ Causal LM to convert it to a Prefix LM.
6
  Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
  and treat the input prompt as the prefix in `generate`.
8
  """
 
 
9
  from types import MethodType
10
- from typing import Any, List, MutableMapping, Optional, Tuple, Union
11
  import torch
 
 
 
 
12
  from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
13
  from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
14
  from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
15
  from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
 
 
 
 
16
  _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
17
  CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
18
 
@@ -80,14 +90,13 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
80
  bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
81
  bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
82
  for attn_module in attn_modules:
83
- assert isinstance(attn_module.bias, torch.Tensor)
84
  attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
85
  output = call_og_forward()
86
  for attn_module in attn_modules:
87
  attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
88
  return output
89
 
90
- def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
91
  """Wraps original generate to enable PrefixLM attention."""
92
  attn_modules = _get_attn_modules(model)
93
  for attn_module in attn_modules:
@@ -100,8 +109,228 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
100
  setattr(model, 'generate', MethodType(generate, model))
101
  setattr(model, '_prefix_lm_converted', True)
102
  return model
103
- _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS
104
- CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
107
  """Converts a HuggingFace Causal LM to a Prefix LM.
@@ -111,6 +340,8 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
111
  - `GPTNeoForCausalLM`
112
  - `GPTNeoXForCausalLM`
113
  - `GPTJForCausalLM`
 
 
114
 
115
  Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
116
  `generate` method and/or select underlying methods depending on the model class.
@@ -160,10 +391,14 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
160
  """
161
  if isinstance(model, _SUPPORTED_GPT_MODELS):
162
  return _convert_gpt_causal_lm_to_prefix_lm(model)
 
 
 
 
163
  else:
164
  raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
165
 
166
- def add_bidirectional_mask_if_missing(batch: MutableMapping):
167
  """Attempts to add bidirectional_mask to batch if missing.
168
 
169
  Raises:
 
6
  Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
  and treat the input prompt as the prefix in `generate`.
8
  """
9
+ import math
10
+ import warnings
11
  from types import MethodType
12
+ from typing import Any, Dict, List, Optional, Tuple, Union
13
  import torch
14
+ from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
15
+ from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
16
+ from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
17
+ from transformers.models.bloom.modeling_bloom import logging
18
  from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
19
  from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
20
  from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
21
  from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
22
+ from transformers.models.opt.modeling_opt import OPTForCausalLM
23
+ from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
24
+ from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
25
+ logger = logging.get_logger(__name__)
26
  _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
27
  CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
28
 
 
90
  bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
91
  bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
92
  for attn_module in attn_modules:
 
93
  attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
94
  output = call_og_forward()
95
  for attn_module in attn_modules:
96
  attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
97
  return output
98
 
99
+ def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]):
100
  """Wraps original generate to enable PrefixLM attention."""
101
  attn_modules = _get_attn_modules(model)
102
  for attn_module in attn_modules:
 
109
  setattr(model, 'generate', MethodType(generate, model))
110
  setattr(model, '_prefix_lm_converted', True)
111
  return model
112
+
113
+ def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
114
+ """Converts a BLOOM Causal LM to a Prefix LM.
115
+
116
+ Supported HuggingFace model classes:
117
+ - `BloomForCausalLM`
118
+
119
+ See `convert_hf_causal_lm_to_prefix_lm` for more details.
120
+ """
121
+ if hasattr(model, '_prefix_lm_converted'):
122
+ return model
123
+ assert isinstance(model, BloomForCausalLM)
124
+ assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
125
+
126
+ def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
127
+ combined_attention_mask = None
128
+ device = attention_mask.device
129
+ (_, src_length) = input_shape
130
+ if src_length > 1:
131
+ combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
132
+ if bidirectional_mask is not None:
133
+ assert attention_mask.shape == bidirectional_mask.shape
134
+ expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
135
+ combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
136
+ expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
137
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
138
+ return combined_attention_mask
139
+
140
+ def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
141
+ num_heads = self.config.n_head
142
+ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
143
+ base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
144
+ powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
145
+ slopes = torch.pow(base, powers)
146
+ if closest_power_of_2 != num_heads:
147
+ extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
148
+ num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
149
+ extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
150
+ slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
151
+ qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
152
+ ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
153
+ diffs = qa - ka + key_length - query_length
154
+ diffs = -diffs.abs()
155
+ alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
156
+ alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
157
+ return alibi.to(dtype)
158
+ KeyValueT = Tuple[torch.Tensor, torch.Tensor]
159
+
160
+ def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
161
+ if deprecated_arguments.pop('position_ids', False) is not False:
162
+ warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
163
+ if len(deprecated_arguments) > 0:
164
+ raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
165
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
166
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
167
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
168
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
169
+ if input_ids is not None and inputs_embeds is not None:
170
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
171
+ elif input_ids is not None:
172
+ (batch_size, seq_length) = input_ids.shape
173
+ elif inputs_embeds is not None:
174
+ (batch_size, seq_length, _) = inputs_embeds.shape
175
+ else:
176
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
177
+ if past_key_values is None:
178
+ past_key_values = tuple([None] * len(self.h))
179
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
180
+ if inputs_embeds is None:
181
+ inputs_embeds = self.word_embeddings(input_ids)
182
+ hidden_states = self.word_embeddings_layernorm(inputs_embeds)
183
+ presents = () if use_cache else None
184
+ all_self_attentions = () if output_attentions else None
185
+ all_hidden_states = () if output_hidden_states else None
186
+ seq_length_with_past = seq_length
187
+ past_key_values_length = 0
188
+ if past_key_values[0] is not None:
189
+ tmp = past_key_values[0][0]
190
+ past_key_values_length = tmp.shape[2]
191
+ seq_length_with_past = seq_length_with_past + past_key_values_length
192
+ if attention_mask is None:
193
+ attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
194
+ else:
195
+ attention_mask = attention_mask.to(hidden_states.device)
196
+ alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
197
+ causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
198
+ for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
199
+ if output_hidden_states:
200
+ hst = (hidden_states,)
201
+ all_hidden_states = all_hidden_states + hst
202
+ if self.gradient_checkpointing and self.training:
203
+ if use_cache:
204
+ logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
205
+ use_cache = False
206
+
207
+ def create_custom_forward(module):
208
+
209
+ def custom_forward(*inputs):
210
+ return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
211
+ return custom_forward
212
+ outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
213
+ else:
214
+ outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
215
+ hidden_states = outputs[0]
216
+ if use_cache is True:
217
+ presents = presents + (outputs[1],)
218
+ if output_attentions:
219
+ oa = (outputs[2 if use_cache else 1],)
220
+ all_self_attentions = all_self_attentions + oa
221
+ hidden_states = self.ln_f(hidden_states)
222
+ if output_hidden_states:
223
+ hst = (hidden_states,)
224
+ all_hidden_states = all_hidden_states + hst
225
+ if not return_dict:
226
+ return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
227
+ return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
228
+ setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
229
+ setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
230
+ setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
231
+ KeyValueT = Tuple[torch.Tensor, torch.Tensor]
232
+
233
+ def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
234
+ """Replacement forward method for BloomCausalLM."""
235
+ if deprecated_arguments.pop('position_ids', False) is not False:
236
+ warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
237
+ if len(deprecated_arguments) > 0:
238
+ raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
239
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
240
+ transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
241
+ hidden_states = transformer_outputs[0]
242
+ lm_logits = self.lm_head(hidden_states)
243
+ loss = None
244
+ if labels is not None:
245
+ shift_logits = lm_logits[..., :-1, :].contiguous()
246
+ shift_labels = labels[..., 1:].contiguous()
247
+ (batch_size, seq_length, vocab_size) = shift_logits.shape
248
+ loss_fct = CrossEntropyLoss()
249
+ loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
250
+ if not return_dict:
251
+ output = (lm_logits,) + transformer_outputs[1:]
252
+ return (loss,) + output if loss is not None else output
253
+ return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
254
+
255
+ def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
256
+ if past:
257
+ input_ids = input_ids[:, -1].unsqueeze(-1)
258
+ bidirectional_mask = None
259
+ if past[0][0].shape[0] == input_ids.shape[0]:
260
+ past = self._convert_to_bloom_cache(past)
261
+ else:
262
+ bidirectional_mask = torch.ones_like(input_ids)
263
+ return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
264
+ setattr(model, 'forward', MethodType(forward, model))
265
+ setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
266
+ setattr(model, '_prefix_lm_converted', True)
267
+ return model
268
+
269
+ def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
270
+ """Converts an OPT Causal LM to a Prefix LM.
271
+
272
+ Supported HuggingFace model classes:
273
+ - `OPTForCausalLM`
274
+
275
+ See `convert_hf_causal_lm_to_prefix_lm` for more details.
276
+ """
277
+ if hasattr(model, '_prefix_lm_converted'):
278
+ return model
279
+ assert isinstance(model, OPTForCausalLM)
280
+ assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
281
+ setattr(model, '_original_forward', getattr(model, 'forward'))
282
+ setattr(model, '_original_generate', getattr(model, 'generate'))
283
+ model.model.decoder.bidirectional_mask = None
284
+
285
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
286
+ combined_attention_mask = None
287
+ if input_shape[-1] > 1:
288
+ if self.bidirectional_mask == 'g':
289
+ (bsz, src_length) = input_shape
290
+ combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
291
+ else:
292
+ combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
293
+ if self.bidirectional_mask is not None:
294
+ assert attention_mask.shape == self.bidirectional_mask.shape
295
+ expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
296
+ combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
297
+ if attention_mask is not None:
298
+ expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
299
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
300
+ return combined_attention_mask
301
+ setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
302
+
303
+ def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
304
+
305
+ def call_og_forward():
306
+ return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
307
+ if bidirectional_mask is None:
308
+ return call_og_forward()
309
+ self.model.decoder.bidirectional_mask = bidirectional_mask
310
+ try:
311
+ outputs = call_og_forward()
312
+ except:
313
+ self.model.decoder.bidirectional_mask = None
314
+ raise
315
+ self.model.decoder.bidirectional_mask = None
316
+ return outputs
317
+
318
+ def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
319
+ """Wraps original generate to enable PrefixLM-style attention."""
320
+ self.model.decoder.bidirectional_mask = 'g'
321
+ try:
322
+ output = self._original_generate(*args, **kwargs)
323
+ except:
324
+ self.model.decoder.bidirectional_mask = None
325
+ raise
326
+ self.model.decoder.bidirectional_mask = None
327
+ return output
328
+ setattr(model, 'forward', MethodType(forward, model))
329
+ setattr(model, 'generate', MethodType(generate, model))
330
+ setattr(model, '_prefix_lm_converted', True)
331
+ return model
332
+ _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
333
+ CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
334
 
335
  def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
336
  """Converts a HuggingFace Causal LM to a Prefix LM.
 
340
  - `GPTNeoForCausalLM`
341
  - `GPTNeoXForCausalLM`
342
  - `GPTJForCausalLM`
343
+ - `BloomForCausalLM`
344
+ - `OPTForCausalLM`
345
 
346
  Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
347
  `generate` method and/or select underlying methods depending on the model class.
 
391
  """
392
  if isinstance(model, _SUPPORTED_GPT_MODELS):
393
  return _convert_gpt_causal_lm_to_prefix_lm(model)
394
+ elif isinstance(model, BloomForCausalLM):
395
+ return _convert_bloom_causal_lm_to_prefix_lm(model)
396
+ elif isinstance(model, OPTForCausalLM):
397
+ return _convert_opt_causal_lm_to_prefix_lm(model)
398
  else:
399
  raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
400
 
401
+ def add_bidirectional_mask_if_missing(batch: Dict[str, Any]):
402
  """Attempts to add bidirectional_mask to batch if missing.
403
 
404
  Raises:
meta_init_context.py CHANGED
@@ -1,5 +1,4 @@
1
  from contextlib import contextmanager
2
- from typing import Any, Callable, Optional
3
  import torch
4
  import torch.nn as nn
5
 
@@ -58,29 +57,25 @@ def init_on_device(device: torch.device, include_buffers: bool=False):
58
  if include_buffers:
59
  old_register_buffer = nn.Module.register_buffer
60
 
61
- def register_empty_parameter(self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]):
62
- old_register_parameter(self, name, param)
63
  if param is not None:
64
- parameter = self._parameters[name]
65
- assert parameter is not None
66
- param_cls = type(parameter)
67
- kwargs = parameter.__dict__
68
- self._parameters[name] = param_cls(parameter.to(device), **kwargs)
69
-
70
- def register_empty_buffer(self: torch.nn.Module, name: str, tensor: Optional[torch.Tensor], persistent: bool=True):
71
- old_register_buffer(self, name, tensor, persistent=persistent)
72
- if tensor is not None:
73
- named_buffer = self._buffers[name]
74
- assert named_buffer is not None
75
- self._buffers[name] = named_buffer.to(device)
76
  if include_buffers:
77
  tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
78
  else:
79
  tensor_constructors_to_patch = {}
80
 
81
- def patch_tensor_constructor(fn: Callable):
82
 
83
- def wrapper(*args: Any, **kwargs: Any):
84
  kwargs['device'] = device
85
  return fn(*args, **kwargs)
86
  return wrapper
 
1
  from contextlib import contextmanager
 
2
  import torch
3
  import torch.nn as nn
4
 
 
57
  if include_buffers:
58
  old_register_buffer = nn.Module.register_buffer
59
 
60
+ def register_empty_parameter(module, name, param):
61
+ old_register_parameter(module, name, param)
62
  if param is not None:
63
+ param_cls = type(module._parameters[name])
64
+ kwargs = module._parameters[name].__dict__
65
+ module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
66
+
67
+ def register_empty_buffer(module, name, buffer):
68
+ old_register_buffer(module, name, buffer)
69
+ if buffer is not None:
70
+ module._buffers[name] = module._buffers[name].to(device)
 
 
 
 
71
  if include_buffers:
72
  tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
73
  else:
74
  tensor_constructors_to_patch = {}
75
 
76
+ def patch_tensor_constructor(fn):
77
 
78
+ def wrapper(*args, **kwargs):
79
  kwargs['device'] = device
80
  return fn(*args, **kwargs)
81
  return wrapper
modeling_mpt.py CHANGED
@@ -2,174 +2,34 @@
2
 
3
  Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
  """
5
- from __future__ import annotations
6
  import math
7
  import warnings
8
- from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
9
  import torch
10
  import torch.nn as nn
11
  import torch.nn.functional as F
12
- from .attention import is_flash_v1_installed, is_flash_v2_installed
13
- if is_flash_v2_installed():
14
- try:
15
- from flash_attn import bert_padding
16
- from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding
17
- except Exception as e:
18
- raise e
19
- if is_flash_v1_installed():
20
- try:
21
- from flash_attn import bert_padding
22
- except Exception as e:
23
- raise e
24
- from transformers import PreTrainedModel, PreTrainedTokenizerBase
25
  from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
26
- from transformers.models.llama.modeling_llama import LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding
27
- from transformers.models.llama.modeling_llama import LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding
28
- from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding as HFRotaryEmbedding
29
- from .attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
30
  from .blocks import MPTBlock
31
  from .custom_embedding import SharedEmbedding
32
- from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
33
- from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
34
- from .ffn import MPTMLP as MPTMLP
35
- from .ffn import build_ffn as build_ffn
36
  from .norm import NORM_CLASS_REGISTRY
37
  from .configuration_mpt import MPTConfig
38
  from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
39
  from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
40
  from .meta_init_context import init_empty_weights
41
- from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
42
  try:
43
- from .flash_attn_triton import flash_attn_func as flash_attn_func
44
  except:
45
  pass
46
- import logging
47
- log = logging.getLogger(__name__)
48
-
49
- def gen_rotary_embedding(rope_head_dim: int, rope_impl: str, rope_theta: int, rope_dail_config: dict, rope_hf_config: dict, max_seq_len: int):
50
- if rope_impl == 'dail':
51
- return DAILRotaryEmbedding(dim=rope_head_dim, base=rope_theta, interleaved=False, scale_base=rope_dail_config['xpos_scale_base'] if rope_dail_config['type'] == 'xpos' else None, pos_idx_in_fp32=rope_dail_config['pos_idx_in_fp32'], device='cpu')
52
- elif rope_impl == 'hf':
53
- if rope_hf_config['type'] == 'no_scaling':
54
- return HFRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, device='cpu')
55
- elif rope_hf_config['type'] == 'linear':
56
- return HFLinearScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
57
- elif rope_hf_config['type'] == 'dynamic':
58
- return HFDynamicNTKScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
59
- raise ValueError('rope_impl needs to be either dail or hf')
60
-
61
- def gen_attention_mask_in_length(sequence_id: Union[None, torch.Tensor], S: int, attn_uses_sequence_id: bool, attn_impl: str, attention_mask: Union[torch.Tensor, None]):
62
- """Generates the attention mask used for sequence masking in FA v2.
63
-
64
- Only supports sequence id based sparse attention for no attention masking or attention masking with right padding.
65
- In case of left padding:
66
- 1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407).
67
- 2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention.
68
-
69
- Args:
70
- sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len).
71
- S (int): Sequence length
72
- attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking.
73
- attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention.
74
- attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len)
75
-
76
- Returns:
77
- attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
78
- ```
79
- [
80
- [2, 3, 0, 0, 0, 0],
81
- [3, 2, 0, 0, 0, 0],
82
- [6, 0, 0, 0, 0, 0]
83
- ]
84
- ```
85
- , which refers to the 3D-attention mask:
86
- ```
87
- [
88
- [
89
- [1, 0, 0, 0, 0, 0],
90
- [1, 1, 0, 0, 0, 0],
91
- [0, 0, 1, 0, 0, 0],
92
- [0, 0, 1, 1, 0, 0],
93
- [0, 0, 1, 1, 1, 0],
94
- [0, 0, 0, 0, 0, 1]
95
- ],
96
- [
97
- [1, 0, 0, 0, 0, 0],
98
- [1, 1, 0, 0, 0, 0],
99
- [1, 1, 1, 0, 0, 0],
100
- [0, 0, 0, 1, 0, 0],
101
- [0, 0, 0, 1, 1, 0],
102
- [0, 0, 0, 0, 0, 1]
103
- ],
104
- [
105
- [1, 0, 0, 0, 0, 0],
106
- [1, 1, 0, 0, 0, 0],
107
- [1, 1, 1, 0, 0, 0],
108
- [1, 1, 1, 1, 0, 0],
109
- [1, 1, 1, 1, 1, 0],
110
- [1, 1, 1, 1, 1, 1]
111
- ]
112
- ]
113
- ```.
114
- (The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .)
115
- """
116
- attention_mask_in_length = None
117
- if sequence_id is not None and attn_uses_sequence_id and (attn_impl == 'flash'):
118
- if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]:
119
- raise NotImplementedError('Left padding is not supported with flash attention when attn_uses_sequence_id is set to True.')
120
- if S != sequence_id.shape[-1]:
121
- raise ValueError(f'Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]}).')
122
- if attention_mask is not None:
123
- sequence_id = sequence_id.masked_fill(~attention_mask, 0)
124
- attention_mask_in_length = torch.nn.functional.one_hot(sequence_id)
125
- if attention_mask is not None:
126
- attention_mask_in_length = attention_mask_in_length.masked_fill(~attention_mask.unsqueeze(-1), 0)
127
- attention_mask_in_length = attention_mask_in_length.sum(dim=1)
128
- attention_mask_in_length = torch.nn.functional.pad(attention_mask_in_length, (0, S - attention_mask_in_length.shape[-1]), mode='constant', value=0)
129
- return attention_mask_in_length
130
-
131
- def gen_flash_attn_padding_info(bsz: int, S: int, past_key_len: int, device: torch.device, attention_mask_in_length: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None):
132
- flash_attn_padding_info = {}
133
- if attention_mask_in_length is None:
134
- key_padding_mask = attention_mask
135
- if key_padding_mask is None:
136
- key_padding_mask = torch.ones((bsz, past_key_len + S), dtype=torch.bool, device=device)
137
- query_padding_mask = key_padding_mask[:, -S:]
138
- unpadding_function = bert_padding.unpad_input
139
- else:
140
- key_padding_mask = attention_mask_in_length
141
- query_padding_mask = attention_mask_in_length
142
- unpadding_function = bert_padding.unpad_input_for_concatenated_sequences
143
- (_, indices_q, cu_seqlens_q, max_seqlen_q) = unpadding_function(torch.empty(bsz, S, 1, device=device), query_padding_mask)
144
- (_, indices_k, cu_seqlens_k, max_seqlen_k) = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
145
- (_, indices_v, _, _) = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
146
- flash_attn_padding_info['indices_q'] = indices_q
147
- flash_attn_padding_info['indices_k'] = indices_k
148
- flash_attn_padding_info['indices_v'] = indices_v
149
- flash_attn_padding_info['cu_seqlens_q'] = cu_seqlens_q
150
- flash_attn_padding_info['cu_seqlens_k'] = cu_seqlens_k
151
- flash_attn_padding_info['max_seqlen_q'] = max_seqlen_q
152
- flash_attn_padding_info['max_seqlen_k'] = max_seqlen_k
153
- return flash_attn_padding_info
154
-
155
- def apply_sequence_id(attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int) -> torch.Tensor:
156
- seq_len = sequence_id.shape[-1]
157
- if seq_len > max_seq_len:
158
- raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={max_seq_len}')
159
- attn_bias = attn_bias[..., :seq_len, :seq_len]
160
- cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
161
- min_val = torch.finfo(attn_bias.dtype).min
162
- attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
163
- return attn_bias
164
 
165
  class MPTPreTrainedModel(PreTrainedModel):
166
  config_class = MPTConfig
167
  base_model_prefix = 'model'
168
  _no_split_modules = ['MPTBlock']
169
 
170
- def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool:
171
- return isinstance(module, MPTBlock)
172
-
173
  class MPTModel(MPTPreTrainedModel):
174
 
175
  def __init__(self, config: MPTConfig):
@@ -180,30 +40,19 @@ class MPTModel(MPTPreTrainedModel):
180
  self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
181
  self.alibi = config.attn_config['alibi']
182
  self.alibi_bias_max = config.attn_config['alibi_bias_max']
183
- self.learned_pos_emb = config.learned_pos_emb
184
- if config.init_device == 'mixed':
185
- if dist.get_local_rank() == 0:
186
- config.init_device = 'cpu'
187
- else:
188
- config.init_device = 'meta'
189
  if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
190
  norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
191
  raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
192
  norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
193
  self.embedding_fraction = config.embedding_fraction
194
  self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
195
- if self.learned_pos_emb:
196
- self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
197
  self.emb_drop = nn.Dropout(config.emb_pdrop)
198
  self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
199
  self.norm_f = norm_class(config.d_model, device=config.init_device)
200
- self.rope = config.attn_config['rope']
201
- self.rope_impl = None
202
- if self.rope:
203
- self.rope_impl = config.attn_config['rope_impl']
204
- self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
205
  if config.init_device != 'meta':
206
- log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
207
  self.apply(self.param_init_fn)
208
  self.is_causal = not self.prefix_lm
209
  self._attn_bias_initialized = False
@@ -212,22 +61,25 @@ class MPTModel(MPTPreTrainedModel):
212
  if config.no_bias:
213
  for module in self.modules():
214
  if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
215
- log.info(f'Removing bias from module={module!r}.')
 
216
  module.register_parameter('bias', None)
217
- if hasattr(module, 'use_bias'):
218
- log.info(f'Setting use_bias=False for module={module!r}.')
219
- module.use_bias = False
220
- log.debug(self)
221
- log.debug(f"Using {self.config.init_config['name']} initialization.")
222
-
223
- def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
 
 
224
  return self.wte
225
 
226
- def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
227
  self.wte = value
228
 
229
  @torch.no_grad()
230
- def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
231
  if not self._attn_bias_initialized:
232
  if self.attn_bias_shape:
233
  self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
@@ -244,7 +96,7 @@ class MPTModel(MPTPreTrainedModel):
244
  attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
245
  if self.attn_uses_sequence_id and sequence_id is not None:
246
  assert isinstance(attn_bias, torch.Tensor)
247
- attn_bias = apply_sequence_id(attn_bias, sequence_id, self.config.max_seq_len)
248
  if attention_mask is not None:
249
  s_k = attention_mask.shape[-1]
250
  if attn_bias is None:
@@ -256,9 +108,9 @@ class MPTModel(MPTPreTrainedModel):
256
  raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
257
  min_val = torch.finfo(attn_bias.dtype).min
258
  attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
259
- return (attn_bias, attention_mask)
260
 
261
- def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
262
  (s_k, s_q) = attn_bias.shape[-2:]
263
  if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
264
  raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
@@ -273,7 +125,17 @@ class MPTModel(MPTPreTrainedModel):
273
  attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
274
  return attn_bias
275
 
276
- def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
 
 
 
 
 
 
 
 
 
 
277
  return_dict = return_dict if return_dict is not None else self.config.return_dict
278
  use_cache = use_cache if use_cache is not None else self.config.use_cache
279
  if attention_mask is not None:
@@ -285,7 +147,7 @@ class MPTModel(MPTPreTrainedModel):
285
  if output_attentions:
286
  if self.attn_impl != 'torch':
287
  raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
288
- if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
289
  raise NotImplementedError('MPT does not support training with left padding.')
290
  if self.prefix_lm and prefix_mask is None:
291
  raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
@@ -294,42 +156,26 @@ class MPTModel(MPTPreTrainedModel):
294
  raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
295
  elif self.attn_uses_sequence_id is False and sequence_id is not None:
296
  warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
297
- if input_ids is not None and inputs_embeds is not None:
298
- raise ValueError('You cannot specify both input_ids and inputs_embeds.')
299
- elif input_ids is not None:
300
- bsz = input_ids.size(0)
301
- S = input_ids.size(1)
302
- x = self.wte(input_ids)
303
- input_device = input_ids.device
304
- elif inputs_embeds is not None:
305
- bsz = inputs_embeds.size(0)
306
- S = inputs_embeds.size(1)
307
- x = inputs_embeds
308
- input_device = inputs_embeds.device
309
- else:
310
- raise ValueError('You must specify input_ids or inputs_embeds')
311
  assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
312
- rotary_emb_w_meta_info = None
313
- past_position = 0
314
- if past_key_values is not None:
315
- if len(past_key_values) != self.config.n_layers:
316
- raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
317
- past_position = past_key_values[0][0].size(1)
318
- if self.attn_impl == 'torch':
319
- past_position = past_key_values[0][0].size(3)
320
- if self.learned_pos_emb or self.rope:
321
- if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
322
- raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
323
- if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
324
- pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
325
- if attention_mask is not None:
326
- pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
327
- if self.learned_pos_emb:
328
- x = x + self.wpe(pos)
329
- elif self.rope and self.rope_impl == 'hf':
330
- rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
331
- elif self.rope and self.rope_impl == 'dail':
332
- rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
333
  if self.embedding_fraction == 1:
334
  x = self.emb_drop(x)
335
  else:
@@ -337,26 +183,18 @@ class MPTModel(MPTPreTrainedModel):
337
  assert isinstance(self.emb_drop, nn.Module)
338
  x = self.emb_drop(x_shrunk)
339
  (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
340
- attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
341
- alibi_slopes = None
342
- if self.alibi and self.attn_impl == 'flash':
343
- alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
344
- presents = () if use_cache else None
345
  if use_cache and past_key_values is None:
346
  past_key_values = [() for _ in range(self.config.n_layers)]
347
  all_hidden_states = () if output_hidden_states else None
348
  all_self_attns = () if output_attentions else None
349
- flash_attn_padding_info = {}
350
- if self.attn_impl == 'flash':
351
- flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
352
  for (b_idx, block) in enumerate(self.blocks):
353
  if output_hidden_states:
354
  assert all_hidden_states is not None
355
  all_hidden_states = all_hidden_states + (x,)
356
  past_key_value = past_key_values[b_idx] if past_key_values is not None else None
357
- (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
358
- if presents is not None:
359
- presents += (present,)
360
  if output_attentions:
361
  assert all_self_attns is not None
362
  all_self_attns = all_self_attns + (attn_weights,)
@@ -364,33 +202,25 @@ class MPTModel(MPTPreTrainedModel):
364
  if output_hidden_states:
365
  assert all_hidden_states is not None
366
  all_hidden_states = all_hidden_states + (x,)
367
- return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
368
 
369
- def param_init_fn(self, module: nn.Module) -> None:
370
  init_fn_name = self.config.init_config['name']
371
  MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
372
 
373
- def fsdp_wrap_fn(self, module: nn.Module) -> bool:
374
- return _fsdp_wrap_fn(self, module)
375
 
376
- def activation_checkpointing_fn(self, module: nn.Module) -> bool:
377
  return isinstance(module, MPTBlock)
378
 
379
  class MPTForCausalLM(MPTPreTrainedModel):
380
 
381
  def __init__(self, config: MPTConfig):
382
  super().__init__(config)
383
- log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
384
- self.transformer: MPTModel = MPTModel(config)
385
- self.lm_head = None
386
  if not config.tie_word_embeddings:
387
- self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
388
- self.lm_head._fsdp_wrap = True
389
- for child in self.transformer.children():
390
- if isinstance(child, torch.nn.ModuleList):
391
- continue
392
- if isinstance(child, torch.nn.Module):
393
- child._fsdp_wrap = True
394
  self.logit_scale = None
395
  if config.logit_scale is not None:
396
  logit_scale = config.logit_scale
@@ -401,89 +231,53 @@ class MPTForCausalLM(MPTPreTrainedModel):
401
  raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
402
  self.logit_scale = logit_scale
403
 
404
- def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
405
- return self.transformer.get_input_embeddings()
406
 
407
- def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
408
- self.transformer.set_input_embeddings(value)
409
 
410
- def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]:
411
- if self.lm_head is not None:
412
- return self.lm_head
413
- return self.transformer.get_input_embeddings()
414
 
415
- def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]) -> None:
416
- if self.lm_head is not None:
417
- self.lm_head = new_embeddings
418
- else:
419
- if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)):
420
- raise ValueError('new_embeddings must be an instance of SharedEmbedding ' + f'or nn.Embedding, but got {type(new_embeddings)}.')
421
- warnings.warn('Using `set_output_embeddings` to set the embedding layer of ' + 'MPTForCausalLM with tied weights. Given weights are tied, ' + 'using `set_input_embeddings` is recommended over using ' + '`set_output_embeddings`.')
422
- self.transformer.set_input_embeddings(new_embeddings)
423
-
424
- def tie_weights(self) -> None:
425
- self.lm_head = None
426
 
427
- def set_decoder(self, decoder: MPTModel) -> None:
428
  self.transformer = decoder
429
 
430
- def get_decoder(self) -> MPTModel:
431
  return self.transformer
432
 
433
- def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
434
  return_dict = return_dict if return_dict is not None else self.config.return_dict
435
  use_cache = use_cache if use_cache is not None else self.config.use_cache
436
- outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds)
437
- if self.lm_head is not None:
438
- logits = self.lm_head(outputs.last_hidden_state)
439
- else:
440
- out = outputs.last_hidden_state
441
- out = out.to(self.transformer.wte.weight.device)
442
- logits = self.transformer.wte(out, True)
443
  if self.logit_scale is not None:
444
  if self.logit_scale == 0:
445
  warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
446
  logits *= self.logit_scale
447
  loss = None
448
  if labels is not None:
449
- _labels = torch.roll(labels, shifts=-1)
450
- _labels[:, -1] = -100
451
- loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
452
  return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
453
 
454
- def param_init_fn(self, module: nn.Module) -> None:
455
  init_fn_name = self.config.init_config['name']
456
  MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
457
 
458
- def fsdp_wrap_fn(self, module: nn.Module) -> bool:
459
- return _fsdp_wrap_fn(self, module)
460
 
461
- def activation_checkpointing_fn(self, module: nn.Module) -> bool:
462
- act_ckpt_list = getattr(self.config, 'activation_checkpointing_target', None) or ['MPTBlock']
463
- if isinstance(act_ckpt_list, str):
464
- act_ckpt_list = [act_ckpt_list]
465
- elif not isinstance(act_ckpt_list, list):
466
- raise ValueError(f'activation_checkpointing_target must be either a single string or a list, but got {type(act_ckpt_list)}')
467
- if 'MPTBlock' in act_ckpt_list or 'mptblock' in act_ckpt_list:
468
- if len(act_ckpt_list) > 1:
469
- log.info('Activation checkpointing MPTBlock only (ignoring other sub-block modules specified in activation_checkpointing_target).')
470
- return isinstance(module, MPTBlock)
471
- mod_types = ()
472
- for mod_name in act_ckpt_list:
473
- if mod_name.lower() == 'mptblock':
474
- mod_types += (MPTBlock,)
475
- elif mod_name in ATTN_CLASS_REGISTRY:
476
- mod_types += (ATTN_CLASS_REGISTRY[mod_name],)
477
- elif mod_name in FFN_CLASS_REGISTRY:
478
- mod_types += (FFN_CLASS_REGISTRY[mod_name],)
479
- elif mod_name in NORM_CLASS_REGISTRY:
480
- mod_types += (NORM_CLASS_REGISTRY[mod_name],)
481
- else:
482
- msg = ', '.join(list(ATTN_CLASS_REGISTRY.keys()) + list(FFN_CLASS_REGISTRY.keys()) + list(NORM_CLASS_REGISTRY.keys()) + ['MPTBlock'])
483
- raise ValueError(f'{mod_name} (specified in activation_checkpointing_target) is not a recognized option out of available options {msg}.')
484
- return isinstance(module, mod_types)
485
 
486
- def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
 
 
487
  attention_mask = kwargs['attention_mask'].bool()
488
  if attention_mask[:, -1].sum() != attention_mask.shape[0]:
489
  raise NotImplementedError('MPT does not support generation with right padding.')
@@ -499,15 +293,10 @@ class MPTForCausalLM(MPTPreTrainedModel):
499
  raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
500
  else:
501
  prefix_mask = None
502
- if inputs_embeds is not None and past_key_values is None:
503
- model_inputs = {'inputs_embeds': inputs_embeds}
504
- else:
505
- model_inputs = {'input_ids': input_ids}
506
- model_inputs.update({'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)})
507
- return model_inputs
508
 
509
  @staticmethod
510
- def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
511
  """Used by HuggingFace generate when using beam search with kv-caching.
512
 
513
  See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
 
2
 
3
  Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
  """
 
5
  import math
6
  import warnings
7
+ from typing import List, Optional, Tuple, Union
8
  import torch
9
  import torch.nn as nn
10
  import torch.nn.functional as F
11
+ from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
 
 
 
 
 
 
 
 
 
 
 
 
12
  from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+ from .attention import attn_bias_shape, build_attn_bias
 
 
 
14
  from .blocks import MPTBlock
15
  from .custom_embedding import SharedEmbedding
 
 
 
 
16
  from .norm import NORM_CLASS_REGISTRY
17
  from .configuration_mpt import MPTConfig
18
  from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
19
  from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
20
  from .meta_init_context import init_empty_weights
21
+ from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
22
  try:
23
+ from .flash_attn_triton import flash_attn_func
24
  except:
25
  pass
26
+ Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  class MPTPreTrainedModel(PreTrainedModel):
29
  config_class = MPTConfig
30
  base_model_prefix = 'model'
31
  _no_split_modules = ['MPTBlock']
32
 
 
 
 
33
  class MPTModel(MPTPreTrainedModel):
34
 
35
  def __init__(self, config: MPTConfig):
 
40
  self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
41
  self.alibi = config.attn_config['alibi']
42
  self.alibi_bias_max = config.attn_config['alibi_bias_max']
 
 
 
 
 
 
43
  if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
44
  norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
45
  raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
46
  norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
47
  self.embedding_fraction = config.embedding_fraction
48
  self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
49
+ if not self.alibi:
50
+ self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
51
  self.emb_drop = nn.Dropout(config.emb_pdrop)
52
  self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
53
  self.norm_f = norm_class(config.d_model, device=config.init_device)
 
 
 
 
 
54
  if config.init_device != 'meta':
55
+ print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.')
56
  self.apply(self.param_init_fn)
57
  self.is_causal = not self.prefix_lm
58
  self._attn_bias_initialized = False
 
61
  if config.no_bias:
62
  for module in self.modules():
63
  if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
64
+ if config.verbose:
65
+ warnings.warn(f'Removing bias ({module.bias}) from {module}.')
66
  module.register_parameter('bias', None)
67
+ if config.verbose and config.verbose > 2:
68
+ print(self)
69
+ if 'verbose' not in self.config.init_config:
70
+ self.config.init_config['verbose'] = self.config.verbose
71
+ if self.config.init_config['verbose'] > 1:
72
+ init_fn_name = self.config.init_config['name']
73
+ warnings.warn(f'Using {init_fn_name} initialization.')
74
+
75
+ def get_input_embeddings(self):
76
  return self.wte
77
 
78
+ def set_input_embeddings(self, value):
79
  self.wte = value
80
 
81
  @torch.no_grad()
82
+ def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
83
  if not self._attn_bias_initialized:
84
  if self.attn_bias_shape:
85
  self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
 
96
  attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
97
  if self.attn_uses_sequence_id and sequence_id is not None:
98
  assert isinstance(attn_bias, torch.Tensor)
99
+ attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
100
  if attention_mask is not None:
101
  s_k = attention_mask.shape[-1]
102
  if attn_bias is None:
 
108
  raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
109
  min_val = torch.finfo(attn_bias.dtype).min
110
  attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
111
+ return (attn_bias, None)
112
 
113
+ def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
114
  (s_k, s_q) = attn_bias.shape[-2:]
115
  if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
116
  raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
 
125
  attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
126
  return attn_bias
127
 
128
+ def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
129
+ seq_len = sequence_id.shape[-1]
130
+ if seq_len > self.config.max_seq_len:
131
+ raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
132
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
133
+ cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
134
+ min_val = torch.finfo(attn_bias.dtype).min
135
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
136
+ return attn_bias
137
+
138
+ def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
139
  return_dict = return_dict if return_dict is not None else self.config.return_dict
140
  use_cache = use_cache if use_cache is not None else self.config.use_cache
141
  if attention_mask is not None:
 
147
  if output_attentions:
148
  if self.attn_impl != 'torch':
149
  raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
150
+ if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
151
  raise NotImplementedError('MPT does not support training with left padding.')
152
  if self.prefix_lm and prefix_mask is None:
153
  raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
 
156
  raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
157
  elif self.attn_uses_sequence_id is False and sequence_id is not None:
158
  warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
159
+ S = input_ids.size(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
160
  assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
161
+ tok_emb = self.wte(input_ids)
162
+ if self.alibi:
163
+ x = tok_emb
164
+ else:
165
+ past_position = 0
166
+ if past_key_values is not None:
167
+ if len(past_key_values) != self.config.n_layers:
168
+ raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
169
+ past_position = past_key_values[0][0].size(1)
170
+ if self.attn_impl == 'torch':
171
+ past_position = past_key_values[0][0].size(3)
172
+ if S + past_position > self.config.max_seq_len:
173
+ raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
174
+ pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
175
+ if attention_mask is not None:
176
+ pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
177
+ pos_emb = self.wpe(pos)
178
+ x = tok_emb + pos_emb
 
 
 
179
  if self.embedding_fraction == 1:
180
  x = self.emb_drop(x)
181
  else:
 
183
  assert isinstance(self.emb_drop, nn.Module)
184
  x = self.emb_drop(x_shrunk)
185
  (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
 
 
 
 
 
186
  if use_cache and past_key_values is None:
187
  past_key_values = [() for _ in range(self.config.n_layers)]
188
  all_hidden_states = () if output_hidden_states else None
189
  all_self_attns = () if output_attentions else None
 
 
 
190
  for (b_idx, block) in enumerate(self.blocks):
191
  if output_hidden_states:
192
  assert all_hidden_states is not None
193
  all_hidden_states = all_hidden_states + (x,)
194
  past_key_value = past_key_values[b_idx] if past_key_values is not None else None
195
+ (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
196
+ if past_key_values is not None:
197
+ past_key_values[b_idx] = past_key_value
198
  if output_attentions:
199
  assert all_self_attns is not None
200
  all_self_attns = all_self_attns + (attn_weights,)
 
202
  if output_hidden_states:
203
  assert all_hidden_states is not None
204
  all_hidden_states = all_hidden_states + (x,)
205
+ return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns)
206
 
207
+ def param_init_fn(self, module):
208
  init_fn_name = self.config.init_config['name']
209
  MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
210
 
211
+ def fsdp_wrap_fn(self, module):
212
+ return isinstance(module, MPTBlock)
213
 
214
+ def activation_checkpointing_fn(self, module):
215
  return isinstance(module, MPTBlock)
216
 
217
  class MPTForCausalLM(MPTPreTrainedModel):
218
 
219
  def __init__(self, config: MPTConfig):
220
  super().__init__(config)
 
 
 
221
  if not config.tie_word_embeddings:
222
+ raise ValueError('MPTForCausalLM only supports tied word embeddings')
223
+ self.transformer = MPTModel(config)
 
 
 
 
 
224
  self.logit_scale = None
225
  if config.logit_scale is not None:
226
  logit_scale = config.logit_scale
 
231
  raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
232
  self.logit_scale = logit_scale
233
 
234
+ def get_input_embeddings(self):
235
+ return self.transformer.wte
236
 
237
+ def set_input_embeddings(self, value):
238
+ self.transformer.wte = value
239
 
240
+ def get_output_embeddings(self):
241
+ return self.transformer.wte
 
 
242
 
243
+ def set_output_embeddings(self, new_embeddings):
244
+ self.transformer.wte = new_embeddings
 
 
 
 
 
 
 
 
 
245
 
246
+ def set_decoder(self, decoder):
247
  self.transformer = decoder
248
 
249
+ def get_decoder(self):
250
  return self.transformer
251
 
252
+ def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
253
  return_dict = return_dict if return_dict is not None else self.config.return_dict
254
  use_cache = use_cache if use_cache is not None else self.config.use_cache
255
+ outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
256
+ logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
 
 
 
 
 
257
  if self.logit_scale is not None:
258
  if self.logit_scale == 0:
259
  warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
260
  logits *= self.logit_scale
261
  loss = None
262
  if labels is not None:
263
+ labels = torch.roll(labels, shifts=-1)
264
+ labels[:, -1] = -100
265
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
266
  return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
267
 
268
+ def param_init_fn(self, module):
269
  init_fn_name = self.config.init_config['name']
270
  MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
271
 
272
+ def fsdp_wrap_fn(self, module):
273
+ return isinstance(module, MPTBlock)
274
 
275
+ def activation_checkpointing_fn(self, module):
276
+ return isinstance(module, MPTBlock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
 
278
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
279
+ if inputs_embeds is not None:
280
+ raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
281
  attention_mask = kwargs['attention_mask'].bool()
282
  if attention_mask[:, -1].sum() != attention_mask.shape[0]:
283
  raise NotImplementedError('MPT does not support generation with right padding.')
 
293
  raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
294
  else:
295
  prefix_mask = None
296
+ return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
 
 
 
 
 
297
 
298
  @staticmethod
299
+ def _reorder_cache(past_key_values, beam_idx):
300
  """Used by HuggingFace generate when using beam search with kv-caching.
301
 
302
  See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
norm.py CHANGED
@@ -1,7 +1,6 @@
1
- from typing import Dict, List, Optional, Type, Union
2
  import torch
3
 
4
- def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
5
  if torch.is_autocast_enabled():
6
  if tensor.device.type == 'cuda':
7
  dtype = torch.get_autocast_gpu_dtype()
@@ -14,10 +13,10 @@ def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
14
 
15
  class LPLayerNorm(torch.nn.LayerNorm):
16
 
17
- def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
18
  super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
19
 
20
- def forward(self, x: torch.Tensor) -> torch.Tensor:
21
  module_device = x.device
22
  downcast_x = _cast_if_autocast_enabled(x)
23
  downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
@@ -25,15 +24,15 @@ class LPLayerNorm(torch.nn.LayerNorm):
25
  with torch.autocast(enabled=False, device_type=module_device.type):
26
  return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
27
 
28
- def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
29
- output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
30
  if weight is not None:
31
  return output * weight
32
  return output
33
 
34
  class RMSNorm(torch.nn.Module):
35
 
36
- def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
37
  super().__init__()
38
  self.eps = eps
39
  if weight:
@@ -41,17 +40,17 @@ class RMSNorm(torch.nn.Module):
41
  else:
42
  self.register_parameter('weight', None)
43
 
44
- def forward(self, x: torch.Tensor) -> torch.Tensor:
45
  return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
46
 
47
  class LPRMSNorm(RMSNorm):
48
 
49
- def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
50
  super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
51
 
52
- def forward(self, x: torch.Tensor) -> torch.Tensor:
53
  downcast_x = _cast_if_autocast_enabled(x)
54
  downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
55
  with torch.autocast(enabled=False, device_type=x.device.type):
56
  return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
57
- NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
 
 
1
  import torch
2
 
3
+ def _cast_if_autocast_enabled(tensor):
4
  if torch.is_autocast_enabled():
5
  if tensor.device.type == 'cuda':
6
  dtype = torch.get_autocast_gpu_dtype()
 
13
 
14
  class LPLayerNorm(torch.nn.LayerNorm):
15
 
16
+ def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
17
  super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
18
 
19
+ def forward(self, x):
20
  module_device = x.device
21
  downcast_x = _cast_if_autocast_enabled(x)
22
  downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
 
24
  with torch.autocast(enabled=False, device_type=module_device.type):
25
  return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
26
 
27
+ def rms_norm(x, weight=None, eps=1e-05):
28
+ output = x / torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
29
  if weight is not None:
30
  return output * weight
31
  return output
32
 
33
  class RMSNorm(torch.nn.Module):
34
 
35
+ def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
36
  super().__init__()
37
  self.eps = eps
38
  if weight:
 
40
  else:
41
  self.register_parameter('weight', None)
42
 
43
+ def forward(self, x):
44
  return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
45
 
46
  class LPRMSNorm(RMSNorm):
47
 
48
+ def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
49
  super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
50
 
51
+ def forward(self, x):
52
  downcast_x = _cast_if_autocast_enabled(x)
53
  downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
54
  with torch.autocast(enabled=False, device_type=x.device.type):
55
  return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
56
+ NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
param_init_fns.py CHANGED
@@ -2,26 +2,22 @@ import math
2
  import warnings
3
  from collections.abc import Sequence
4
  from functools import partial
5
- from typing import Any, Callable, Optional, Tuple, Union
6
  import torch
7
  from torch import nn
8
- from .fc import FC_CLASS_REGISTRY
9
  from .norm import NORM_CLASS_REGISTRY
10
- try:
11
- import transformer_engine.pytorch as te
12
- except:
13
- te = None
14
 
15
- def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
16
  del kwargs
17
- if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable):
 
 
18
  module.reset_parameters()
19
 
20
- def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
21
  _fused = getattr(module, '_fused', None)
22
  if _fused is None:
23
  raise RuntimeError(f'Internal logic error')
24
- assert isinstance(module.weight, torch.Tensor)
25
  (dim, splits) = _fused
26
  splits = (0, *splits, module.weight.size(dim))
27
  for (s, e) in zip(splits[:-1], splits[1:]):
@@ -29,8 +25,10 @@ def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
29
  slice_indices[dim] = slice(s, e)
30
  init_fn_(module.weight[slice_indices])
31
 
32
- def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
33
  del kwargs
 
 
34
  init_div_is_residual = init_div_is_residual
35
  if init_div_is_residual is False:
36
  div_is_residual = 1.0
@@ -38,18 +36,20 @@ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int,
38
  div_is_residual = math.sqrt(2 * n_layers)
39
  elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
40
  div_is_residual = init_div_is_residual
41
- elif init_div_is_residual.isnumeric():
42
  div_is_residual = float(init_div_is_residual)
43
  else:
44
  div_is_residual = 1.0
45
  raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
46
- if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
 
 
 
47
  if hasattr(module, '_fused'):
48
  fused_init_helper_(module, init_fn_)
49
  else:
50
  init_fn_(module.weight)
51
  if module.bias is not None:
52
- assert isinstance(module.bias, torch.Tensor)
53
  torch.nn.init.zeros_(module.bias)
54
  if init_div_is_residual is not False and getattr(module, '_is_residual', False):
55
  with torch.no_grad():
@@ -60,6 +60,8 @@ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int,
60
  if std == 0:
61
  warnings.warn(f'Embedding layer initialized to 0.')
62
  emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
 
 
63
  elif emb_init_uniform_lim is not None:
64
  lim = emb_init_uniform_lim
65
  if isinstance(lim, Sequence):
@@ -73,13 +75,17 @@ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int,
73
  lim = [-lim, lim]
74
  (a, b) = lim
75
  emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
 
 
76
  else:
77
  emb_init_fn_ = init_fn_
78
  emb_init_fn_(module.weight)
79
  elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
80
- if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor):
 
 
81
  torch.nn.init.ones_(module.weight)
82
- if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor):
83
  torch.nn.init.zeros_(module.bias)
84
  elif isinstance(module, nn.MultiheadAttention):
85
  if module._qkv_same_embed_dim:
@@ -108,45 +114,32 @@ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int,
108
  module.out_proj.weight.div_(div_is_residual)
109
  if module.out_proj.bias is not None:
110
  torch.nn.init.zeros_(module.out_proj.bias)
111
- elif te is not None and isinstance(module, te.LayerNormMLP):
112
- if isinstance(module.layer_norm_weight, torch.Tensor):
113
- torch.nn.init.ones_(module.layer_norm_weight)
114
- if isinstance(module.layer_norm_bias, torch.Tensor):
115
- torch.nn.init.zeros_(module.layer_norm_bias)
116
- init_fn_(module.fc1_weight)
117
- if module.fc1_bias is not None:
118
- assert isinstance(module.fc1_bias, torch.Tensor)
119
- torch.nn.init.zeros_(module.fc1_bias)
120
- init_fn_(module.fc2_weight)
121
- if module.fc2_bias is not None:
122
- assert isinstance(module.fc2_bias, torch.Tensor)
123
- torch.nn.init.zeros_(module.fc2_bias)
124
- with torch.no_grad():
125
- module.fc2_weight.div_(div_is_residual)
126
  else:
127
  for _ in module.parameters(recurse=False):
128
  raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
129
 
130
- def _normal_init_(std: float, mean: float=0.0) -> Callable:
131
  return partial(torch.nn.init.normal_, mean=mean, std=std)
132
 
133
- def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
134
  del kwargs
135
  init_fn_ = _normal_init_(std=std)
136
- generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
 
 
137
 
138
- def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
139
  del kwargs
140
  if init_std is None:
141
  raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
142
- _normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
143
 
144
- def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
145
  del kwargs
146
  std = math.sqrt(2 / (5 * d_model))
147
- _normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
148
 
149
- def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
150
  """From section 2.3.1 of GPT-NeoX-20B:
151
 
152
  An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
@@ -155,25 +148,34 @@ def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init
155
  """
156
  del kwargs
157
  residual_div = n_layers / math.sqrt(10)
158
- small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
 
 
159
 
160
- def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
161
  del kwargs
 
 
162
  kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
163
- generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
164
 
165
- def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
166
  del kwargs
 
 
167
  kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
168
- generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
169
 
170
- def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
171
  del kwargs
172
  xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
173
- generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
 
 
174
 
175
- def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
176
- del kwargs
177
  xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
178
- generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
 
 
179
  MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
 
2
  import warnings
3
  from collections.abc import Sequence
4
  from functools import partial
5
+ from typing import Optional, Tuple, Union
6
  import torch
7
  from torch import nn
 
8
  from .norm import NORM_CLASS_REGISTRY
 
 
 
 
9
 
10
+ def torch_default_param_init_fn_(module: nn.Module, verbose: int=0, **kwargs):
11
  del kwargs
12
+ if verbose > 1:
13
+ warnings.warn(f"Initializing network using module's reset_parameters attribute")
14
+ if hasattr(module, 'reset_parameters'):
15
  module.reset_parameters()
16
 
17
+ def fused_init_helper_(module: nn.Module, init_fn_):
18
  _fused = getattr(module, '_fused', None)
19
  if _fused is None:
20
  raise RuntimeError(f'Internal logic error')
 
21
  (dim, splits) = _fused
22
  splits = (0, *splits, module.weight.size(dim))
23
  for (s, e) in zip(splits[:-1], splits[1:]):
 
25
  slice_indices[dim] = slice(s, e)
26
  init_fn_(module.weight[slice_indices])
27
 
28
+ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
29
  del kwargs
30
+ if verbose > 1:
31
+ warnings.warn(f'If model has bias parameters they are initialized to 0.')
32
  init_div_is_residual = init_div_is_residual
33
  if init_div_is_residual is False:
34
  div_is_residual = 1.0
 
36
  div_is_residual = math.sqrt(2 * n_layers)
37
  elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
38
  div_is_residual = init_div_is_residual
39
+ elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric():
40
  div_is_residual = float(init_div_is_residual)
41
  else:
42
  div_is_residual = 1.0
43
  raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
44
+ if init_div_is_residual is not False:
45
+ if verbose > 1:
46
+ warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
47
+ if isinstance(module, nn.Linear):
48
  if hasattr(module, '_fused'):
49
  fused_init_helper_(module, init_fn_)
50
  else:
51
  init_fn_(module.weight)
52
  if module.bias is not None:
 
53
  torch.nn.init.zeros_(module.bias)
54
  if init_div_is_residual is not False and getattr(module, '_is_residual', False):
55
  with torch.no_grad():
 
60
  if std == 0:
61
  warnings.warn(f'Embedding layer initialized to 0.')
62
  emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
63
+ if verbose > 1:
64
+ warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
65
  elif emb_init_uniform_lim is not None:
66
  lim = emb_init_uniform_lim
67
  if isinstance(lim, Sequence):
 
75
  lim = [-lim, lim]
76
  (a, b) = lim
77
  emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
78
+ if verbose > 1:
79
+ warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
80
  else:
81
  emb_init_fn_ = init_fn_
82
  emb_init_fn_(module.weight)
83
  elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
84
+ if verbose > 1:
85
+ warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
86
+ if hasattr(module, 'weight') and module.weight is not None:
87
  torch.nn.init.ones_(module.weight)
88
+ if hasattr(module, 'bias') and module.bias is not None:
89
  torch.nn.init.zeros_(module.bias)
90
  elif isinstance(module, nn.MultiheadAttention):
91
  if module._qkv_same_embed_dim:
 
114
  module.out_proj.weight.div_(div_is_residual)
115
  if module.out_proj.bias is not None:
116
  torch.nn.init.zeros_(module.out_proj.bias)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  else:
118
  for _ in module.parameters(recurse=False):
119
  raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
120
 
121
+ def _normal_init_(std, mean=0.0):
122
  return partial(torch.nn.init.normal_, mean=mean, std=std)
123
 
124
+ def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
125
  del kwargs
126
  init_fn_ = _normal_init_(std=std)
127
+ if verbose > 1:
128
+ warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
129
+ generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
130
 
131
+ def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
132
  del kwargs
133
  if init_std is None:
134
  raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
135
+ _normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
136
 
137
+ def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
138
  del kwargs
139
  std = math.sqrt(2 / (5 * d_model))
140
+ _normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
141
 
142
+ def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
143
  """From section 2.3.1 of GPT-NeoX-20B:
144
 
145
  An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
 
148
  """
149
  del kwargs
150
  residual_div = n_layers / math.sqrt(10)
151
+ if verbose > 1:
152
+ warnings.warn(f'setting init_div_is_residual to {residual_div}')
153
+ small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
154
 
155
+ def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
156
  del kwargs
157
+ if verbose > 1:
158
+ warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
159
  kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
160
+ generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
161
 
162
+ def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
163
  del kwargs
164
+ if verbose > 1:
165
+ warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
166
  kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
167
+ generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
168
 
169
+ def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
170
  del kwargs
171
  xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
172
+ if verbose > 1:
173
+ warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
174
+ generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
175
 
176
+ def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
 
177
  xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
178
+ if verbose > 1:
179
+ warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
180
+ generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
181
  MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
warnings.py DELETED
@@ -1,22 +0,0 @@
1
- class VersionedDeprecationWarning(DeprecationWarning):
2
- """A custom deprecation warning class that includes version information.
3
-
4
- Attributes:
5
- message (str): The deprecation message describing why the feature is deprecated.
6
- remove_version (str): The version in which the feature will be removed.
7
-
8
- Example:
9
- >>> def deprecated_function():
10
- ... warnings.warn(
11
- ... VersionedDeprecationWarning(
12
- ... "Function XYZ is deprecated.",
13
- ... after_version="2.0.0"
14
- ... )
15
- ... )
16
- ...
17
- >>> deprecated_function()
18
- DeprecationWarning: Function XYZ is deprecated. It will be removed in version 2.0.0.
19
- """
20
-
21
- def __init__(self, message: str, remove_version: str) -> None:
22
- super().__init__(message + f' It will be removed in version {remove_version}.')