segformer-b2-finetuned-segments-pv_v1_normalized_p100_4batch_fp
This model is a fine-tuned version of nvidia/segformer-b2-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0046
- Mean Iou: 0.8880
- Precision: 0.9115
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
---|---|---|---|---|---|
0.6668 | 0.9989 | 229 | 0.4009 | 0.5075 | 0.5321 |
0.2583 | 1.9978 | 458 | 0.1436 | 0.6208 | 0.6535 |
0.1355 | 2.9967 | 687 | 0.0809 | 0.7078 | 0.7644 |
0.088 | 4.0 | 917 | 0.0585 | 0.7472 | 0.8136 |
0.0638 | 4.9989 | 1146 | 0.0452 | 0.7737 | 0.8353 |
0.05 | 5.9978 | 1375 | 0.0365 | 0.7845 | 0.8394 |
0.0401 | 6.9967 | 1604 | 0.0344 | 0.8087 | 0.8717 |
0.0332 | 8.0 | 1834 | 0.0277 | 0.8128 | 0.8682 |
0.0286 | 8.9989 | 2063 | 0.0188 | 0.8210 | 0.8710 |
0.0247 | 9.9978 | 2292 | 0.0148 | 0.8369 | 0.8881 |
0.0214 | 10.9967 | 2521 | 0.0133 | 0.8332 | 0.8716 |
0.0189 | 12.0 | 2751 | 0.0156 | 0.8286 | 0.8597 |
0.017 | 12.9989 | 2980 | 0.0139 | 0.8397 | 0.8726 |
0.0151 | 13.9978 | 3209 | 0.0154 | 0.8544 | 0.8943 |
0.0139 | 14.9967 | 3438 | 0.0114 | 0.8553 | 0.8897 |
0.0127 | 16.0 | 3668 | 0.0108 | 0.8517 | 0.8799 |
0.0118 | 16.9989 | 3897 | 0.0075 | 0.8658 | 0.9040 |
0.0108 | 17.9978 | 4126 | 0.0094 | 0.8700 | 0.9088 |
0.0101 | 18.9967 | 4355 | 0.0084 | 0.8746 | 0.9151 |
0.0094 | 20.0 | 4585 | 0.0071 | 0.8693 | 0.8973 |
0.0088 | 20.9989 | 4814 | 0.0071 | 0.8668 | 0.8931 |
0.0082 | 21.9978 | 5043 | 0.0060 | 0.8786 | 0.9151 |
0.008 | 22.9967 | 5272 | 0.0063 | 0.8776 | 0.9109 |
0.0075 | 24.0 | 5502 | 0.0066 | 0.8776 | 0.9052 |
0.0071 | 24.9989 | 5731 | 0.0060 | 0.8807 | 0.9115 |
0.0069 | 25.9978 | 5960 | 0.0062 | 0.8766 | 0.9004 |
0.0065 | 26.9967 | 6189 | 0.0059 | 0.8754 | 0.8963 |
0.0063 | 28.0 | 6419 | 0.0062 | 0.8825 | 0.9086 |
0.006 | 28.9989 | 6648 | 0.0050 | 0.8839 | 0.9101 |
0.0059 | 29.9978 | 6877 | 0.0051 | 0.8827 | 0.9069 |
0.0057 | 30.9967 | 7106 | 0.0056 | 0.8822 | 0.9053 |
0.0055 | 32.0 | 7336 | 0.0047 | 0.8866 | 0.9133 |
0.0055 | 32.9989 | 7565 | 0.0046 | 0.8876 | 0.9135 |
0.0053 | 33.9978 | 7794 | 0.0052 | 0.8839 | 0.9053 |
0.0052 | 34.9967 | 8023 | 0.0048 | 0.8828 | 0.9035 |
0.0051 | 36.0 | 8253 | 0.0046 | 0.8897 | 0.9156 |
0.005 | 36.9989 | 8482 | 0.0045 | 0.8891 | 0.9137 |
0.005 | 37.9978 | 8711 | 0.0047 | 0.8881 | 0.9120 |
0.005 | 38.9967 | 8940 | 0.0047 | 0.8879 | 0.9110 |
0.0049 | 39.9564 | 9160 | 0.0046 | 0.8880 | 0.9115 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mouadenna/segformer-b2-finetuned-segments-pv_v1_normalized_p100_4batch_fp
Base model
nvidia/segformer-b2-finetuned-ade-512-512