metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-base-cord2
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.9466882067851373
- name: Recall
type: recall
value: 0.9614438063986874
- name: F1
type: f1
value: 0.9540089540089539
- name: Accuracy
type: accuracy
value: 0.9611161939615737
layoutlmv3-base-cord2
This model is a fine-tuned version of microsoft/layoutlmv3-base on the mp-02/cord dataset. It achieves the following results on the evaluation set:
- Loss: 0.1856
- Precision: 0.9467
- Recall: 0.9614
- F1: 0.9540
- Accuracy: 0.9611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 100 | 1.2612 | 0.6788 | 0.7629 | 0.7184 | 0.7685 |
No log | 2.0 | 200 | 0.5621 | 0.8674 | 0.8802 | 0.8738 | 0.8916 |
No log | 3.0 | 300 | 0.3639 | 0.8846 | 0.9114 | 0.8978 | 0.9186 |
No log | 4.0 | 400 | 0.3197 | 0.9153 | 0.9393 | 0.9271 | 0.9410 |
0.8719 | 5.0 | 500 | 0.2304 | 0.9357 | 0.9549 | 0.9452 | 0.9543 |
0.8719 | 6.0 | 600 | 0.2069 | 0.9389 | 0.9573 | 0.9480 | 0.9556 |
0.8719 | 7.0 | 700 | 0.2081 | 0.9459 | 0.9606 | 0.9532 | 0.9593 |
0.8719 | 8.0 | 800 | 0.1901 | 0.9532 | 0.9688 | 0.9609 | 0.9666 |
0.8719 | 9.0 | 900 | 0.1559 | 0.9515 | 0.9647 | 0.9580 | 0.9671 |
0.136 | 10.0 | 1000 | 0.1856 | 0.9467 | 0.9614 | 0.9540 | 0.9611 |
0.136 | 11.0 | 1100 | 0.2020 | 0.9537 | 0.9631 | 0.9584 | 0.9629 |
0.136 | 12.0 | 1200 | 0.1908 | 0.9552 | 0.9631 | 0.9592 | 0.9620 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3